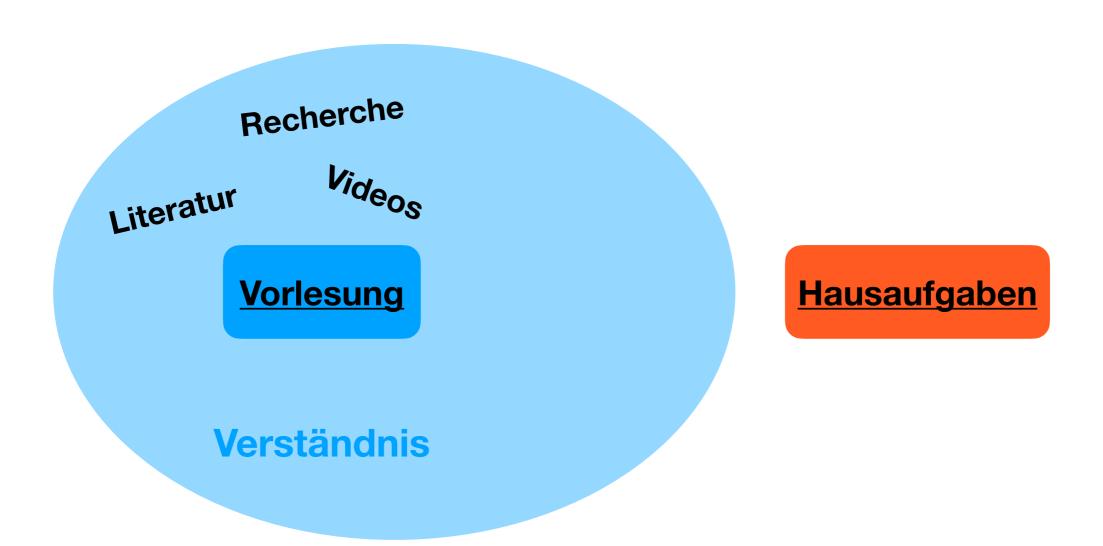
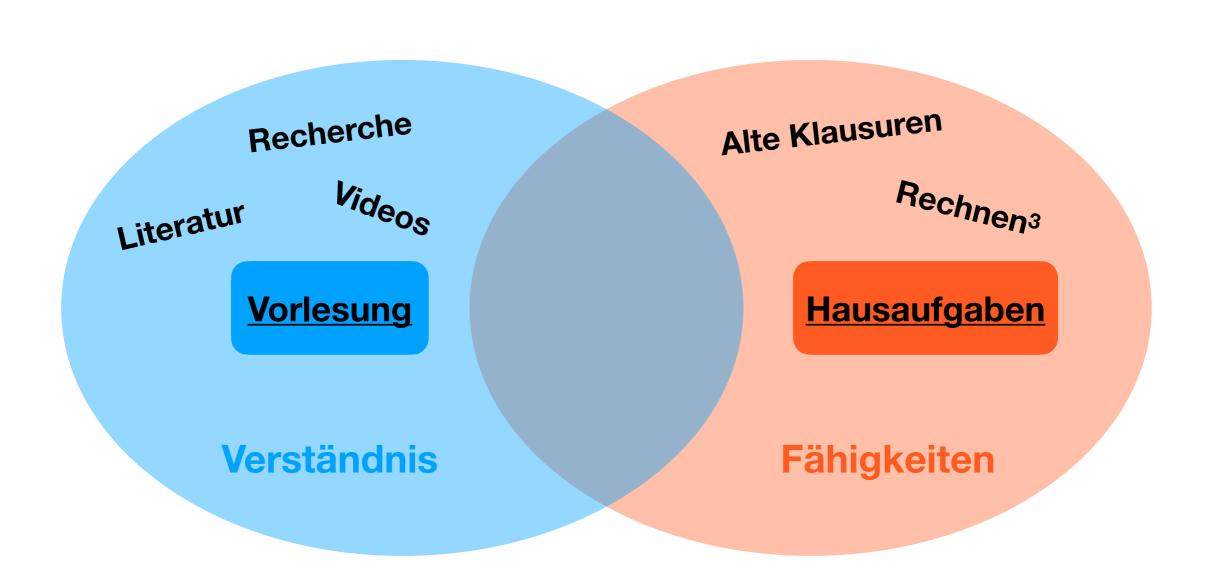
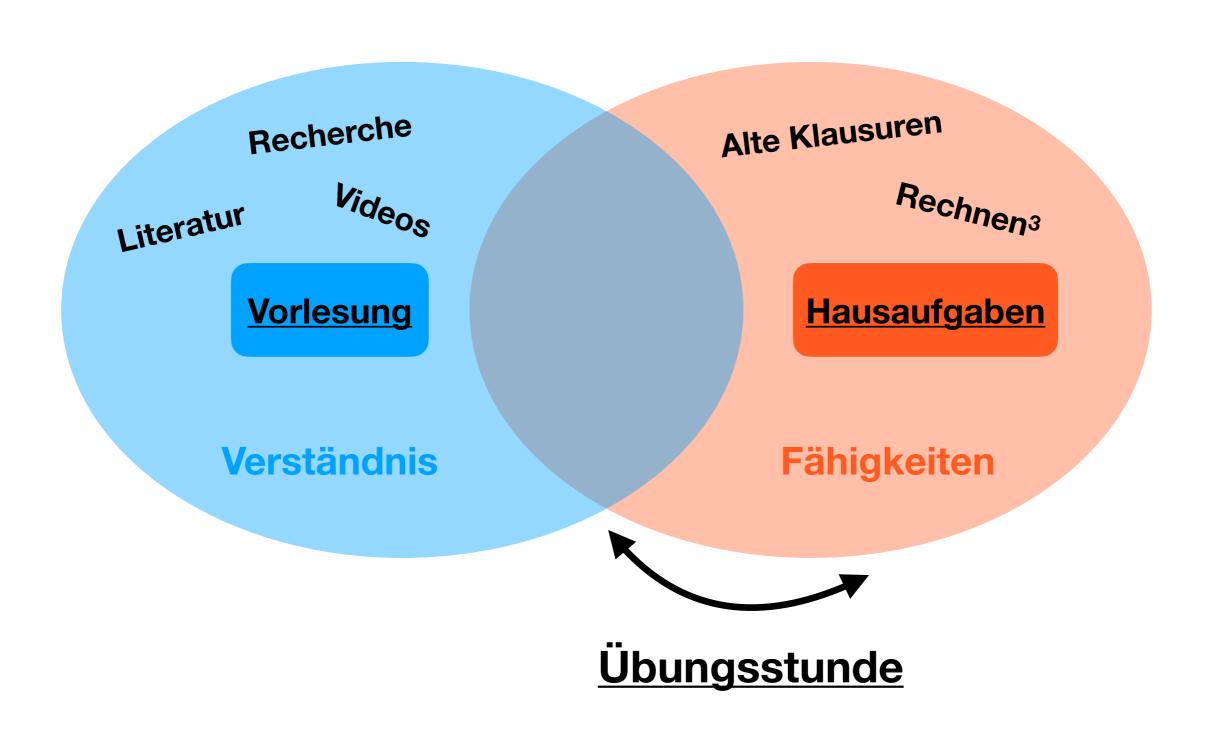
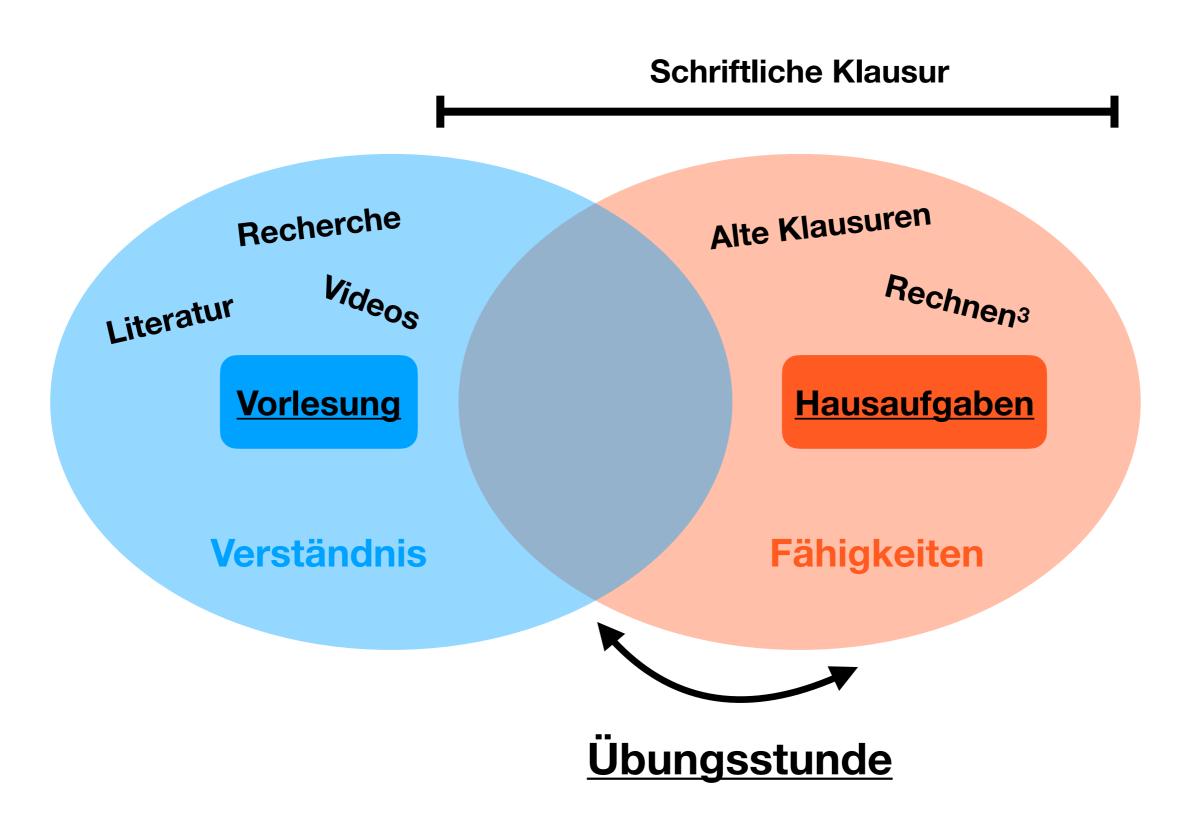
21. September 2020


Lesson 1


Teaching project




<u>Hausaufgaben</u>

Wo ist der Zusammenhang?

Zusammenfassung

Physikalische Einheiten

Zu jeder Zahlenangabe in der Physik gehört die physikalische Einheit. Die Einheit ist wichtig, um verschiedene Angaben zu vergleichen.

Schreibweise: [a] = "Einheit von a"

Beispiele: [s] = m [t] = s $[v] = \frac{[s]}{[t]} = \frac{m}{s}$

Physikalische Einheiten

Zu jeder Zahlenangabe in der Physik gehört die physikalische Einheit. Die Einheit ist wichtig, um verschiedene Angaben zu vergleichen.

Beispiele:
$$[s] = m$$
 $[t] = s$ $[v] = \frac{[s]}{[t]} = \frac{m}{s}$

SI - Einheiten: International genormte Einheiten

Basiseinheiten [international festgelegt] kg mol K cd kg mol K cd S Physik 1 Physik 2

Physikalische Einheiten

Zu jeder Zahlenangabe in der Physik gehört die physikalische Einheit. Die Einheit ist wichtig, um verschiedene Angaben zu vergleichen.

Beispiele:
$$[s] = m$$
 $[t] = s$ $[v] = \frac{[s]}{[t]} = \frac{m}{s}$

SI - Einheiten: International genormte Einheiten

Basiseinheiten

[international festgelegt]

Abgeleitete Einheiten

[aus Basiseinheiten kombiniert]

z.B. Newton
$$N = \frac{kg \cdot m}{s^2}$$

Joule $J = \frac{kg \cdot m^2}{s^2}$

Es gelten ähnliche Regeln wie beim Rechnen mit Variablen!

Multiplikation und Division

Unterschiedlichen Einheiten können einfach multipliziert / dividiert werden

$$5 \text{ m} \cdot 10 \text{ m} = 50 \text{ m}^2$$
 $\frac{2 \text{ m}}{4 \text{ s}} = 0.5 \frac{\text{m}}{\text{s}}$

Es gelten ähnliche Regeln wie beim Rechnen mit Variablen!

Multiplikation und Division

Unterschiedlichen Einheiten können einfach multipliziert / dividiert werden

$$5 \text{ m} \cdot 10 \text{ m} = 50 \text{ m}^2$$
 $\frac{2 \text{ m}}{4 \text{ s}} = 0.5 \frac{\text{m}}{\text{s}}$

Addition und Subtraktion

Zusammenfassen geht nur bei identischen Einheiten

Es gelten ähnliche Regeln wie beim Rechnen mit Variablen!

Multiplikation und Division

Unterschiedlichen Einheiten können einfach multipliziert / dividiert werden

$$5 \text{ m} \cdot 10 \text{ m} = 50 \text{ m}^2$$
 $\frac{2 \text{ m}}{4 \text{ s}} = 0.5 \frac{\text{m}}{\text{s}}$

Addition und Subtraktion

Zusammenfassen geht nur bei identischen Einheiten

$$2\frac{km}{h} + 1\frac{m}{s} = 2\frac{10^3 \text{ m}}{3600 \text{ s}} + 1\frac{m}{s} = \left(\frac{2}{3.6} + 1\right)\frac{m}{s} = 1.56\frac{m}{s}$$

$$2 \text{ m} + 300 \text{ mm} = 2 \text{ m} + 300 \cdot 10^{-3} \text{ m} = 2.3 \text{ m}$$

Es gelten ähnliche Regeln wie beim Rechnen mit Variablen!

Multiplikation und Division

Unterschiedlichen Einheiten können einfach multipliziert / dividiert werden

$$5 \text{ m} \cdot 10 \text{ m} = 50 \text{ m}^2$$
 $\frac{2 \text{ m}}{4 \text{ s}} = 0.5 \frac{\text{m}}{\text{s}}$

Addition und Subtraktion

Zusammenfassen geht nur bei identischen Einheiten

$$2\frac{km}{h} + 1\frac{m}{s} = 2\frac{10^3 \text{ m}}{3600 \text{ s}} + 1\frac{m}{s} = \left(\frac{2}{3.6} + 1\right)\frac{m}{s} = 1.56\frac{m}{s}$$

$$2 \text{ m} + 300 \text{ mm} = 2 \text{ m} + 300 \cdot 10^{-3} \text{ m} = 2.3 \text{ m}$$

Gleichungen

Auf beiden Seiten müssen immer die Einheiten übereinstimmen

Mathematische Funktionen

Innerhalb von sin, cos, tan, exp, log dürfen keine Einheiten übrig bleiben!

Tricks

Wie Einheiten uns helfen können

Mit Einheiten lassen sich manche Grössen besser verstehen. Hier sind Beispiele:

Geschwindigkeit
$$[v] = \frac{m}{s}$$

Druck

Wieviele Newton wirken <u>pro</u> Quadratmeter auf einen Körper?

Beschleunigung

Um wieviele Meter <u>pro</u> Sekunde ändert sich die Geschwindigkeit <u>pro</u> Sekunde?

Frequenz
$$[f] = Hz = \frac{1}{s}$$

Wie Einheiten uns helfen können

Mit Einheiten lassen sich manche Grössen besser verstehen. Hier sind Beispiele:

Geschwindigkeit
$$[v] = \frac{m}{s}$$

Wieviele Meter <u>pro</u> Sekunde legt etwas zurück?

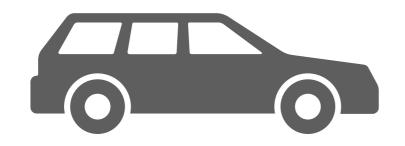
Druck
$$[P] = Pa = \frac{N}{m^2}$$

Wieviele Newton wirken <u>pro</u> Quadratmeter auf einen Körper?

Beschleunigung
$$[a] = \frac{m}{s^2}$$

Um wieviele Meter <u>pro</u> Sekunde ändert sich die Geschwindigkeit <u>pro</u> Sekunde?

Frequenz
$$[f] = Hz = \frac{1}{s}$$

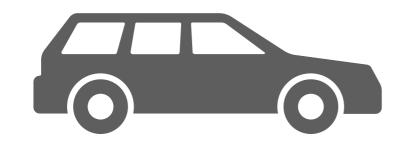

Wie oft wiederholt sich ein Vorgang pro Sekunde?

Übungen

Die Schrecksekunde

Ein Auto fährt mit der Geschwindigkeit 70 km/h auf einer Landstraße. Plötzlich springt ein Reh auf die Fahrbahn.

Der Fahrer ist etwas abgelenkt und startet die Vollbremsung erst nach einer ganzen Sekunde.



Die Schrecksekunde

Ein Auto fährt mit der Geschwindigkeit 70 km/h auf einer Landstraße. Plötzlich springt ein Reh auf die Fahrbahn.

Der Fahrer ist etwas abgelenkt und startet die Vollbremsung erst nach einer ganzen Sekunde.

Frage: Um welche Strecke ist das Auto in dieser Sekunde bereits weitergefahren?

[Lösung ohne die Formel nachzuschauen]

Die Schrecksekunde - Lösung zur Aufgabe

1. Betrachte die Dimension der angegebenen Geschwindigkeit:

"Kilometer pro Stunde" ist eine Einheit für Geschwindigkeit

$$\frac{\mathrm{km}}{\mathrm{h}} = [v] = \frac{[s]}{[t]}$$

Die Schrecksekunde - Lösung zur Aufgabe

1. Betrachte die Dimension der angegebenen Geschwindigkeit:

"Kilometer pro Stunde" ist eine Einheit für Geschwindigkeit

$$\frac{\mathrm{km}}{\mathrm{h}} = [v] = \frac{[s]}{[t]}$$

2. "Errate" die Formel aus der angegebenen Einheit

$$\frac{\mathrm{km}}{\mathrm{h}} = [v] = \frac{[s]}{[t]} \qquad \Rightarrow v = \frac{s}{t}$$

Die Schrecksekunde - Lösung zur Aufgabe

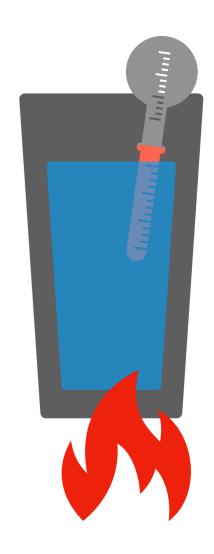
1. Betrachte die Dimension der angegebenen Geschwindigkeit:

"Kilometer pro Stunde" ist eine Einheit für Geschwindigkeit

$$\frac{\mathrm{km}}{\mathrm{h}} = [v] = \frac{[s]}{[t]}$$

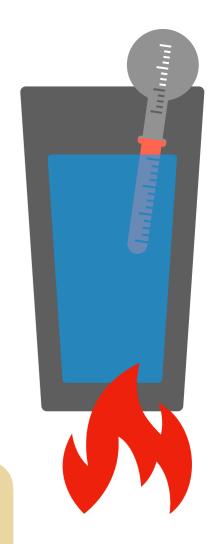
2. "Errate" die Formel aus der angegebenen Einheit

$$\frac{\mathrm{km}}{\mathrm{h}} = [v] = \frac{[s]}{[t]} \qquad \Rightarrow v = \frac{s}{t}$$


3. Umstellen und ausrechnen

$$s = v \cdot t = 70 \frac{\text{km}}{\text{h}} \cdot 1 \text{ s}$$

$$s(t = 1s) = \frac{70}{3.6} \cdot \frac{\text{m} \cdot \text{s}}{\text{s}} = 19.4 \text{ m}$$


Erwärmung von Wasser

In einem Eimer wird Wasser der Masse m = 3 kg erwärmt. Wasser hat eine spezifische Wärmekapazität von $c \approx 4.2 \frac{\mathrm{J}}{kg \cdot K}$.

Erwärmung von Wasser

In einem Eimer wird Wasser der Masse m = 3 kg erwärmt. Wasser hat eine spezifische Wärmekapazität von $c \approx 4.2 \frac{\mathrm{J}}{kg \cdot K}$.

Frage: Wieviel Energie benötigt man, um das Wasser um 1 K zu erwärmen?

[Das Joule (J) ist die Einheit für Energie]

Erwärmung von Wasser - Lösung zur Aufgabe

1. Dimensionsbetrachtung für die Wärmekapazität:

"Joule pro Kilogramm pro Kelvin"
$$[c] = \frac{J}{\text{kg} \cdot \text{K}} = \frac{[E]}{[m] \cdot [T]}$$

Erwärmung von Wasser - Lösung zur Aufgabe

1. Dimensionsbetrachtung für die Wärmekapazität:

"Joule pro Kilogramm pro Kelvin"
$$[c] = \frac{J}{\text{kg} \cdot \text{K}} = \frac{[E]}{[m] \cdot [T]}$$

2. "Errate" die Formel aus der Einheit

$$c = \frac{E}{m \cdot T}$$

Erwärmung von Wasser - Lösung zur Aufgabe

1. Dimensionsbetrachtung für die Wärmekapazität:

"Joule pro Kilogramm pro Kelvin"
$$[c] = \frac{J}{\text{kg} \cdot \text{K}} = \frac{[E]}{[m] \cdot [T]}$$

2. "Errate" die Formel aus der Einheit

$$c = \frac{E}{m \cdot T}$$

3. Umstellen und ausrechnen

$$E = c \cdot m \cdot T$$
 $E = 4.2 \frac{J}{\text{kg} \cdot \text{K}} \cdot 3 \text{ kg} \cdot 1 \text{ K}$

$$E = (4.2 \cdot 3) \text{ J} = 12.6 \text{ J}$$