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Introduction

In molecular dynamics simulations of liquids the most common (but not the only [1, 2])
periodic boundary conditions employed are those of the simple cube. However in simulations
of crystalline ionic systems, these periodic boundary conditions are not generally suitable
and an alternative is required which matches the natural periodicity of the crystal. The
most obvious choice under these circumstances is a parallelepiped MD cell, which may be
defined simply as a multiple of the unit cell for the crystal lattice (Figure 1). Thus if the
unit cell has vectors a, b and ¢, the MD cell is defined analogously by vectors A=1xa,
B=mxb and C=nxXc respectively (I,m and n being integers). The volume of the MD cell
is then 1XmXxn times the unit cell volume. The advantages of this approach, particularly
when constructing the initial lattice or analysing the simulated structural properties, are
obvious.

Two questions that immediately arise from this are: (a) how does one go about formu-
lating such a scheme? and (b) is it an efficient way to proceed? The purpose of this note
is to discuss some aspects of these questions.

Formulating the Scheme

Since the problem arises most commonly in simulations of crystalline systems, it is natural
to resort to the methods of crystallographers. In crystallography, the crystal structure is
defined by the unit cell vectors a, b and ¢ and the so-called fractional coordinates s; of the
ions within the unit cell [3]. The components s;;, s,; and s,;, of the vectors s; range in
value from 0 to 1, hence their name. The positions r; of the ions in the crystal are given
by:

T = 850+ 8,0+ s,ic



or in matrix notation:

r, =

=

S;

Where the columns of the matrix kA are composed of the vectors a, b and c. It therefore
appears that we have two ways of defining the location of an ion in the cell; the location
in real space defined by r; and the location in dimensionless space defined by s;. It turns
out that we need to use both of these coodinate systems to formulate a periodic boundary
condition for MD simulations. In what follows, to reduce verbiage, I refer to r; as vectors
in R space and s; as vectors in S space.



Figure 1
The relationship between the unit cell and the MD cell (in 2D).



Figure 2

A problematic arrangement of ions in the proposed periodic boundary scheme (a 2D ana-
logy). Ion A is near the centre line of the cell. The scheme will select the image B’ in
preference to B”, which is actually the nearer of the two images. The use of an appropriate
spherical cutoff removes this difficulty (see text).



In this formulation we therefore think of the MD cell as being a kind of “unit cell”
defined by the vectors A, B and C described above. The locations of the ions within the
cells are therefore defined in matrix notation by:

r, = £ S;

Where matrix H is composed of the vectors A, B and C analogous to the unit cell case. We
may perform the simulation in either R or S space, though if we use the latter we will have
to use the Lagrangian formulation of mechanics in place of the more common Newtonian
[4]. Despite this apparent additional complexity I have found this option advantageous in
dealing with ionic systems, since then the Ewald sum is more easily dealt with [5]. However
to avoid a lengthy digression I will assume that we are to work in S space, but note that
the alternative is equally acceptable. I will use the relationship between the r; and s;
coordinates to refer back to the real world where necessary.

It is a characteristic of S space coordinates that the location of the periodic images in
the infinite crystal of an ion labeled 7 is accomplished by the simple addition of an integer
to each of the components of s;. If we are concerned only to find those image ions in the
immediately adjacent cells, they can all be found by adding or subtracting unity. This is
all we need to know to formulate the periodic boundary scheme in the MD simulation!.

In MD the periodic boundary is employed in two circumstances. Firstly, it is used to
relocate ions, that have moved out of the MD cell in the course of the simulation, back into
the cell at its image point, to maintain the total number of ions in the cell. Secondly, for a
given ion, it is used to find the nearest image of each other ion in the MD cell, in order to
calculate the pair forces and energies.

The first case is easy to describe and, if we are working in S space, easy to apply; we
simply replace each s; by its corrected vector sf:

si =8, —INT(2s5 - 1)

Where 1 is a vector with unit components. (Note that the MD cell has faces at s, = 0 and
s; = 1 in this case, and not at s, = —1 and s, = +1 as is commonly used in MD. The
same comment applies in the y and z directions also.) The second case is more complicated,
because we do not wish merely to locate an image ion, but we must be sure it is the nearest
image and this necessitates working in both S and R spaces. To be specific, we have an
ion pair labelled ¢ and j and we wish to calculate their separation in both § and R spaces
(i.e. s;; and r;;), such that the r;; is the smallest possible. It turns out to be simpler than
may be anticipated. Working in § space we calculate

sij = (8 — 5;) — INT(2(s; — 55) — 1)



Which is essentially the same as the above equation for relocating wayward ions. Our next

step is even simpler:
r.. =H s

Tij = £ 24
Where H is the matrix defining the MD cell. This is all we need!

An argument I have heard opposing this scheme is that it may not pick out the correct
nearest image for ions separated by distances close to half the width of the MD cell. That
such a suggestion is made is understandable when one realises that the selection of the
nearest image is made in S space, where the anisotropy of the real MD cell has been
removed. (The kind of circumstances where problems are most easily seen are shown in
Figure 2.) However, the procedure is safe if one is using a spherical cutoff in R space, the
radius of which is not greater than half the smallest perpendicular width of the MD cell. In
mathematical terms: If we define the perpendicular widths of the cell as:

Ws=|AeBxC|/|BxC|

Wp =|BeC x A|/|C x A|
We =|Ce AXx B|/|Ax B|

(This is, of course, merely the shortest distance between opposing faces of the MD cell).
Then the condition for non-violation of the minimum image convention is:

Rc < 0.5% MIN(WA, WB,Wc)

The proof of this simple. In the appendix I show that an ion at the centre of a sphere of
radius R, defined as above, can only interact with one of the images of the other ions in
the MD cell and that this image must necessarily be the nearest.

Efficiency

The algorithm described above has the merit of simplicity, but something should be said
about its efficiency. The main point I should raise is that the requirement of a spherical
cutoff to guarantee the minimum image can result in lower efficency than for simple cubic
boundary conditions. There is not only the matter of the additional computation associated
with the matrix operations described above and which may or may not matter much if the
forces being calculated are relatively expensive. There is also the fact that volume of the
sphere enscribed by the cutoff at best can only contain approximately half the ions that the
cell contains. Therefore if one choses to use a parallelepiped MD cell that is far removed
from a cube, one should recall that much effort will go into calculating the distance between
ions which subsequently will be deemed to be non-inteacting. In such circumstances the



use of a ‘Neighbour List’ method [6] may be essential. Alternatively, one could consider
an alternative unit cell for the system, which is more like a cube. Fortunately this is often
easier than it sounds.

Readers who have their own methods for dealing with the problem outlined in this note
are invited to contribute their solutions!
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Appendix

Proof of Validity of Minimum Image

The proof given here is not rigorous in the mathematical sense, but I hope the argument is
sufficiently clear to warrant its acceptance. Basically, it goes as follows:

1. Each ion has a fractional coordinate s; in S space that is related to its coordinate
in R space by the relation:
r,=H s

T =

where H is the matrix defining the MD cell.

2. Since the system is infinitely periodic the location of the cell origin is immaterial.
Suppose we chose the origin to be at the location of one of the ions. I call this
the shifted cell, to distinguish it from the original cell.

3. The shifted cell will, by definition, contain unique images of all the ions. i.e.
within this cell no two ions will be periodic images of each other. The shifting
procedure is best carried out in S space, using the integer arithmetic described
above.

4. Even though the shift of the cell origin is performed in § space, the same ion
will be at the origin of the corresponding cell in R space. Furthermore, there
will be a one-to-one correspondence between all the ions in the S space cell and
those in the R space cell. Hence the ions in the R space cell also form a unique
set - none is the periodic image of another in the same cell.

5. A sphere drawn in R space around the central ion of radius less than the min-
imum width of the cell cannot include ions that are periodic images of each other.
This must follow because the sphere is contained within the cell and the cell has
no internal periodic images.



6. Therefore all pair interactions between the central ion and the other tons within
the same sphere are unique and necessarily represent the nearest image interac-
tions of the central ion.

7. Clearly, we may now consider any other ion as being at the centre of the cell
and repeat the argument. This proves that all the interactions calculated in this
scheme satisfy the minimum image convention.
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