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CHAPTER 4
Crystal Defects and Noncrystalline 
 Structure—  Imperfection

In Chapter 3, we looked at a wide variety of  atomic- 
 scale structures characteristic of important engineer-
ing materials. The primary limitation of Chapter  3 
was that it dealt only with the perfectly repetitive 
crystalline structures. As you have learned long 

before this first course in engineering materials, nothing in our world is quite 
perfect. No crystalline material exists that does not have at least a few structural 
flaws. In this chapter, we will systematically survey these imperfections.

Our first consideration is that no material can be prepared without some 
degree of chemical impurity. The impurity atoms or ions in the resulting solid 
solution serve to alter the structural regularity of the ideally pure material.

Independent of impurities, there are numerous structural flaws that represent 
a loss of crystalline perfection. The simplest type of flaw is the point defect, such as a 
missing atom (vacancy). This type of flaw is the inevitable result of the normal ther-
mal vibration of atoms in any solid at a temperature above absolute zero. Linear 
defects, or dislocations, follow an extended and sometimes complex path through 
the crystal structure. Planar defects represent the boundary between a nearly per-
fect crystalline region and its surroundings. Some materials are completely lacking 
in crystalline order. Common window glass is such a noncrystalline solid.

 4.1 The Solid  Solution—  Chemical Imperfection
It is not possible to avoid some contamination of practical materials. Even  high- 
 purity semiconductor products have some measurable level of impurity atoms. 
Many engineering materials contain significant amounts of several different 

4.1  The Solid  Solution—  Chemical 
Imperfection

4.2  Point  Defects—  Zero-  Dimensional 
Imperfections

4.3  Linear Defects, or  Dislocations—   
 One-  Dimensional Imperfections

4.4  Planar  Defects—  Two-  Dimensional 
Imperfections

4.5  Noncrystalline  Solids—  Three- 
 Dimensional Imperfections

In contrast to the “perfect” 
structures of Chapter 3, this 
 high-  resolution transmission 
electron micrograph shows 
irregularities in the packing 
of atoms including the twin 
boundaries in the lower 
 right-  hand corner of this 
image of a diamond film. 
Such  two-  dimensional defects 
are among the topics of this 
chapter. (Courtesy of Klaus van 
Benthem, Andrew Thron, and 
David Horsley, University of 
California, Davis.)
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 SECTION 4.1 The Solid  Solution— Chemical Imperfection 121

components. Commercial metal alloys are examples. As a result, all materials 
that the engineer deals with on a daily basis are actually solid solutions. At first, 
the concept of a solid solution may be difficult to grasp. In fact, it is essentially 
equivalent to the more familiar liquid solution, such as the water–alcohol system 
shown in Figure 4.1. The complete solubility of alcohol in water is the result of 
complete molecular mixing. A similar result is seen in Figure 4.2, which shows a 
solid solution of copper and nickel atoms sharing the fcc crystal structure. Nickel 
acts as a solute dissolving in the copper solvent. This particular configuration is 
referred to as a substitutional solid solution because the nickel atoms are sub-
stituting for copper atoms on the fcc atom sites. This configuration will tend to 
occur when the atoms do not differ greatly in size. The water–alcohol system 
shown in Figure 4.1 represents two liquids completely soluble in each other in all 
proportions. For this complete miscibility to occur in metallic solid solutions, the 
two metals must be quite similar, as defined by the  Hume-  Rothery* rules:

1. Less than about 15% difference in atomic radii
2. The same crystal structure
3. Similar electronegativities (the ability of the atom to attract an electron)
4. The same valence

If one or more of the  Hume-  Rothery rules are violated, only partial solubility 
is possible. For example, less than 2 at % (atomic percent) silicon is soluble in 
aluminum. Inspection of Appendices 1 and 2 shows that Al and Si violate rules 1,  

*William  Hume-  Rothery (1899–1968), British metallurgist, made major contributions to theoretical 
and experimental metallurgy as well as metallurgical education. His empirical rules of  solid-  solution 
formation have been a practical guide to alloy design for more than half a century.

Cu

Ni

FIGURE 4.2 Solid solution of nickel 
in copper shown along a (100) plane. 
This is a substitutional solid solution 
with nickel atoms substituting for 
copper atoms on fcc atom sites.

Alcohol
Water

Liquid solution

Mixing on the
molecular scale

H2O

C2H5OH

FIGURE 4.1 Forming a liquid 
solution of water and alcohol. Mixing 
occurs on the molecular scale.
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122 CHAPTER 4 Crystal Defects and Noncrystalline  Structure— Imperfection

2, and 4. Regarding rule 3, Figure 2.21 shows that the electronegativities of Al 
and Si are quite different, despite their adjacent positions on the periodic table.

Figure 4.2 shows a random solid solution. By contrast, some systems form 
ordered solid solutions. A good example is the alloy AuCu3, shown in Figure 4.3. 
At high temperatures (above 390°C), thermal agitation keeps a random distribu-
tion of the Au and Cu atoms among the fcc sites. Below approximately 390°C, the 
Cu atoms preferentially occupy the  face-  centered positions, and the Au atoms 
preferentially occupy corner positions in the unit cell. Ordering may produce a 
new crystal structure similar to some of the ceramic compound structures. For 
AuCu3 at low temperatures, the  compound-  like structure is based on a simple 
cubic Bravais lattice.

When atom sizes differ greatly, substitution of the smaller atom on a crystal 
structure site may be energetically unstable. In this case, it is more stable for the 
smaller atom simply to fit into one of the spaces, or interstices, among adjacent 
atoms in the crystal structure. Such an interstitial solid solution is displayed in 
Figure 4.4, which shows carbon dissolved interstitially in a-Fe. This interstitial 
solution is a dominant phase in steels. Although more stable than a substitutional 
configuration of C atoms on Fe lattice sites, the interstitial structure of Figure 4.4 
produces considerable strain locally to the a-Fe crystal structure, and less than 
0.1 at % C is soluble in a-Fe.

Gold atom

Copper atom

(a) Disordered (b) Ordered

“Average”
gold-copper atom

FIGURE 4.3 Ordering of the solid solution in the AuCu3 alloy system. (a) Above ∼390°C,  
there is a random distribution of the Au and Cu atoms among the fcc sites. (b) Below 
∼390°C, the Au atoms preferentially occupy the corner positions in the unit cell, giving 
a simple cubic Bravais lattice. (From B. D. Cullity and S. R. Stock, Elements of  X-  Ray 
Diffraction, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 2001.)

C atom dissolved interstitially at a
    0    -type position in the bcc
structure of    -Fe
1
2

1
2

FIGURE 4.4 Interstitial solid solution of carbon in a-iron. The carbon atom is small 
enough to fit with some strain in the interstice (or opening) among adjacent Fe atoms in 
this structure of importance to the steel industry. (This  unit-  cell structure can be compared 
with that shown in Figure 3.4b.)
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 SECTION 4.1 The Solid  Solution— Chemical Imperfection 123

To this point, we have looked at  solid-  solution formation in which a pure 
metal or semiconductor solvent dissolves some solute atoms either substitution-
ally or interstitially. The principles of substitutional  solid-  solution formation in 
these elemental systems also apply to compounds. For example, Figure 4.5 shows 
a random, substitutional solid solution of NiO in MgO. Here, the O2- arrange-
ment is unaffected. The substitution occurs between Ni2 +  and Mg2 + . The example 
of Figure  4.5 is a relatively simple one. In general, the charged state for ions 
in a compound affects the nature of the substitution. In other words, one could 
not indiscriminately replace all of the Ni2 +  ions in Figure  4.5 with Al3 +  ions. 
This replacement would be equivalent to forming a solid solution of Al2O3 in 
MgO, each having distinctly different formulas and crystal structures. The higher 
valence of Al3 +  would give a net positive charge to the oxide compound, creat-
ing a highly unstable condition. As a result, an additional ground rule in forming 
compound solid solutions is the maintenance of charge neutrality.

Figure 4.6 shows how charge neutrality is maintained in a dilute solution of 
Al3 +  in MgO by having only two Al3 +  ions fill every three Mg2 +  sites, which leaves 
one Mg2 +  site vacancy for each two Al3 +  substitutions. This type of vacancy and 
several other point defects will be discussed further in Section 4.2. This example 
of a defect compound suggests the possibility of an even more subtle type of 
solid solution. Figure 4.7 shows a nonstoichiometric compound, Fe1 - xO, in which  
x is ∼0.05. An ideally stoichiometric FeO would be identical to MgO with a 

O2-

Fe3+

Fe2+

Vacancy

FIGURE 4.7 Iron oxide, Fe1 - xO with x ≈ 0.05, is an example of a nonstoichiometric 
compound. Similar to the case of Figure 4.6, both Fe2 +  and Fe3 +  ions occupy the cation 
sites, with one Fe2 +  vacancy occurring for every two Fe3 +  ions present.

O2-

Ni2+

Mg2+

FIGURE 4.5 Random, substitutional solid solution 
of NiO in MgO. The O2- arrangement is unaffected. 
The substitution occurs among Ni 2 +  and Mg 2 +  ions.

O2-

Al3+

Mg2+

Vacancy

FIGURE 4.6 A substitutional solid solution of Al2O3 
in MgO is not as simple as the case of NiO in MgO 
(Figure 4.5). The requirement of charge neutrality in 
the overall compound permits only two Al 3 +  ions to fill 
every three Mg 2 +  vacant sites, leaving one Mg 2 +  vacancy.
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124 CHAPTER 4 Crystal Defects and Noncrystalline  Structure— Imperfection

 NaCl-  type crystal structure consisting of equal numbers of Fe2 +  and O2- ions. 
However, ideal FeO is never found in nature due to the multivalent nature of 
iron. Some Fe3 +  ions are always present. As a result, these Fe3 +  ions play the same 
role in the Fe1 - xO structure as Al3 +  plays in the Al2O3 in MgO solid solution of 
Figure 4.6. One Fe2 +  site vacancy is required to compensate for the presence of 
every two Fe3 +  ions in order to maintain charge neutrality.

EXAMPLE 4.2

How much “oversize” is the C atom in a-Fe? (See Figure 4.4.)

SOLUTION
By inspection of Figure  4.4, it is apparent that an ideal interstitial 
atom centered at 12 0 12 would just touch the surface of the iron atom in 
the center of the  unit-  cell cube. The radius of such an ideal interstitial 
would be

rinterstitial =
1
2

a - R,

where a is the length of the  unit-  cell edge, and R is the radius of an 
iron atom.

Remembering Figure 3.4, we note that

 length of unit - cell body diagonal = 4R

 = 23a,

EXAMPLE 4.1

Do Cu and Ni satisfy  Hume-  Rothery’s first rule for complete solid 
solubility?

SOLUTION
From Appendix 2,

rCu = 0.128 nm,

rNi = 0.125 nm,

and

 ,  difference =
(0.128 - 0.125)nm

0.128 nm
* 100

 = 2.3, (6  15, ).

Therefore, yes.
In fact, all four rules are satisfied by these two neighbors from 

the periodic table (in agreement with the observation that they are 
completely soluble in all proportions).
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 SECTION 4.1 The Solid  Solution— Chemical Imperfection 125

PRACTICE PROBLEM 4.1

Copper and nickel (which are completely soluble in each other) 
satisfy the first  Hume-  Rothery rule of solid solubility, as shown 
in Example  4.1. Aluminum and silicon are soluble in each other 
to only a limited degree. Do they satisfy the first  Hume-  Rothery 
rule? 

PRACTICE PROBLEM 4.2

The interstitial site for dissolving a carbon atom in a-Fe was shown 
in Figure 4.4. Example 4.2 shows that a carbon atom is more than 
four times too large for the site and, consequently, carbon solubility 
in a-Fe is quite low. Consider now the case for interstitial solution 
of carbon in the  high-  temperature (fcc) structure of g-Fe . The larg-
est interstitial site for a carbon atom is a 1

2 01 type. (a) Sketch this 
interstitial solution in a manner similar to the structure shown in 
Figure 4.4. (b) Determine by how much the C atom in g-Fe is over-
size. (Note that the atomic radius for fcc iron is 0.127 nm.)

or

a =
423

R,

as given in Table 3.3. Then,

rinterstitial =
1
2
a 423

Rb - R = 0.1547  R.

From Appendix 2, R = 0.124 nm, giving

rinterstitial = 0.1547(0.124 nm) = 0.0192 nm.

However, Appendix 2 gives rcarbon = 0.077 nm, or

rcarbon

rinterstitial
=

0.077 nm
0.0192 nm

= 4.01.

Therefore, the carbon atom is roughly four times too large to fit next 
to the adjacent iron atoms without strain. The severe local distortion 
required for this accommodation leads to the low solubility of C in 
a-Fe  (6  0.1 at , ).
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126 CHAPTER 4 Crystal Defects and Noncrystalline  Structure— Imperfection

 4.2 Point  Defects—  Zero-  Dimensional Imperfections
Structural defects exist in real materials independently of chemical impuri-
ties. Imperfections associated with the crystalline point lattice are called point 
defects. Figure 4.8 illustrates the two common types of point defects associated 
with elemental solids: (1) The vacancy is simply an unoccupied atom site in the 
crystal structure, and (2) the interstitial, or interstitialcy, is an atom occupying an 
interstitial site not normally occupied by an atom in the perfect crystal structure 
or an extra atom inserted into the perfect crystal structure such that two atoms 
occupy positions close to a singly occupied atomic site in the perfect structure. 
In the preceding section, we saw how vacancies can be produced in compounds 
as a response to chemical impurities and nonstoichiometric compositions. Such 
vacancies can also occur independently of these chemical factors (e.g., by the 
thermal vibration of atoms in a solid above a temperature of absolute zero).

Figure 4.9 illustrates the two analogs of the vacancy and interstitialcy for 
compounds. The Schottky* defect is a pair of oppositely charged ion vacan-
cies. This pairing is required in order to maintain local charge neutrality in the 
compound’s crystal structure. The Frenkel defect† is a vacancy–interstitialcy 
combination. Most of the compound crystal structures described in Chapter 3 
were too “tight” to allow Frenkel defect formation. However, the relatively 
open CaF2-type structure can accommodate cation interstitials without exces-
sive lattice strain. Defect structures in compounds can be further complicated by 
charging due to “electron trapping” or “electron hole trapping” at these lattice 

*Walter Hans Schottky (1886–1976), German physicist, was the son of a prominent mathematician. 
Besides identifying the Schottky defect, he invented the  screen-  grid tube (in 1915) and discovered the 
Schottky effect of thermionic emission (i.e., the current of electrons leaving a heated metal surface 
increases when an external electrical field is applied).
†Yakov Ilyich Frenkel (1894–1954), Russian physicist, made significant contributions to a wide range 
of areas, including  solid-  state physics, electrodynamics, and geophysics. Although his name is best 
remembered in conjunction with defect structure, he was an especially strong contributor to the 
understanding of ferromagnetism (a topic that is discussed in Chapter 14).

Vacancy

Interstitial

FIGURE 4.8 Two common point defects in metal or elemental semiconductor structures 
are the vacancy and the interstitial.

These atomic scale defects play 
a central role in the diffusion 
mechanisms of Chapter 5.
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 SECTION 4.2 Point  Defects— Zero- Dimensional Imperfections 127

imperfections. We shall not dwell on these more complex systems now, but can 
acknowledge that such defects can have important implications for optical prop-
erties (as discussed in Chapter 14).

Schottky defect

Frenkel defect

FIGURE 4.9 Two common point defect structures in compound structures are the 
Schottky defect and the Frenkel defect. Note their similarity to the structures shown in 
Figure 4.8.

EXAMPLE 4.3

The fraction of vacant lattice sites in a crystal is typically small. For 
example, the fraction of aluminum sites vacant at 400°C is 2.29 * 10-5. 
Calculate the density of these sites (in units of m-3).

SOLUTION
From Appendix 1, we find the density of aluminum to be 2 .70 Mg/m3 
and its atomic mass to be 26.98 amu. The corresponding density of 
aluminum atoms is then

 at. density =
r

at . mass
=

2.70 * 106 g/m3

26.98  g>(0.602 * 1024  atoms)

 = 6.02 * 1028  atoms # m-3.

Then, the density of vacant sites will be

 vac. density = 2.29 * 10-5  atom-1 * 6.02 * 1028  atoms # m-3

 = 1.38 * 1024  m-3.

PRACTICE PROBLEM 4.3

Calculate the density of vacant sites (in m-3) for aluminum at 660°C 
( just below its melting point) where the fraction of vacant lattice 
sites is 8.82 * 10-4. (See Example 4.3.)
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128 CHAPTER 4 Crystal Defects and Noncrystalline  Structure— Imperfection

 4.3  Linear Defects, or  Dislocations—  One-  Dimensional 
Imperfections
We have seen that point ( zero-  dimensional) defects are structural imperfections 
resulting from thermal agitation. Linear defects, which are  one-  dimensional, are 
associated primarily with mechanical deformation. Linear defects are also known 
as dislocations. An especially simple example is shown in Figure 4.10. The linear 
defect is commonly designated by the “inverted T” symbol (#), which represents 
the edge of an extra  half-  plane of atoms. Such a configuration lends itself to a 
simple quantitative designation, the Burgers* vector, b. This parameter is simply 
the displacement vector necessary to close a stepwise loop around the defect. In 
the perfect crystal [Figure 4.11(a)], an m * n atomic step loop closes at the start-
ing point. In the region of a dislocation [Figure 4.11(b)], the same loop fails to 
close. The closure vector (b) represents the magnitude of the structural defect. In 
Chapter 6, we shall see that the magnitude of b for the common metal structures 
(bcc, fcc, and hcp) is simply the repeat distance along the highest atomic density 
direction (the direction in which atoms are touching).

Figure 4.10 represents a specific type of linear defect, the edge dislocation, 
so named because the defect, or dislocation line, runs along the edge of the extra 
row of atoms. For the edge dislocation, the Burgers vector is perpendicular to the 
dislocation line. Figure 4.12 shows a fundamentally different type of linear defect, 
the screw dislocation, which derives its name from the spiral stacking of crystal 
planes around the dislocation line. For the screw dislocation, the Burgers vector 
is parallel to the dislocation line. The edge and screw dislocations can be consid-
ered the pure extremes of linear defect structure. Most linear defects in actual 
materials will be mixed, as shown in Figure 4.13. In this general case, the mixed 
dislocation has both edge and screw character. The Burgers vector for the mixed 
dislocation is neither perpendicular nor parallel to the dislocation line, but instead 
retains a fixed orientation in space consistent with the previous definitions for 

*Johannes Martinus Burgers (1895–1981), Dutch-  American fluid mechanician. Although his highly 
productive career centered on aerodynamics and hydrodynamics, a brief investigation of dislocation 
structure around 1940 has made Burgers’s name one of the best known in materials science. He was 
the first to identify the convenience and utility of the closure vector for characterizing a dislocation.

a

FIGURE 4.10 Edge dislocation. The linear 
defect is represented by the edge of an extra  half- 
 plane of atoms. (From A. G. Guy, Elements of 
Physical Metallurgy,  Addison-  Wesley Publishing 
Co., Inc., Reading, MA, 1959.)Nanometer scale defects such 

as this dislocation play a central 
role in the plastic deformation 
mechanisms of Chapter 6.
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 SECTION 4.3 Linear Defects, or  Dislocations— One- Dimensional Imperfections 129

the pure edge and pure screw regions. The local atomic structure around a mixed 
dislocation is difficult to visualize, but the Burgers vector provides a convenient 
and simple description. In compound structures, even the basic Burgers vector 
designation can be relatively complicated. In Chapter 6, we will see that the com-
plexity of dislocation structures has a good deal to do with the basic mechanical 
behavior of the material.

(a)

(b)

b

FIGURE 4.11 Definition 
of the Burgers vector, 
b, relative to an edge 
dislocation. (a) In the 
perfect crystal, an m * n 
atomic step loop closes  
at the starting point. (b) In 
the region of a dislocation, 
the same loop does not 
close, and the closure 
vector (b) represents the 
magnitude of the structural 
defect. For the edge 
dislocation, the Burgers 
vector is perpendicular to 
the dislocation line.

Dislocation line

b

b
b

FIGURE 4.13 Mixed dislocation. 
This dislocation has both edge 
and screw character with a single 
Burgers vector consistent with the 
pure edge and pure screw regions.

Burgers vector, b

Dislocation line

FIGURE 4.12 Screw dislocation. 
The spiral stacking of crystal planes 
leads to the Burgers vector being 
parallel to the dislocation line.

EXAMPLE 4.4

Calculate the magnitude of the Burgers vector for (a) a@Fe and (b) Al.

SOLUTION
(a) As noted in the opening of this section, |b| is merely the repeat 

distance between adjacent atoms along the highest atomic den-
sity direction. For a@Fe, a bcc metal, this distance tends to be 
along the body diagonal of a unit cell. We saw in Figure 3.4 that 
Fe atoms are in contact along the body diagonal. As a result, the 
atomic repeat distance is

r = 2RFe.

Using Appendix 2, we can then calculate, in a simple way,

# b # = r = 2(0 .124 nm)  =   0 .248 nm .

(b) Similarly, the highest atomic density direction in fcc metals such 
as Al tends to be along the face diagonal of a unit cell. As shown 
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130 CHAPTER 4 Crystal Defects and Noncrystalline  Structure— Imperfection

 4.4 Planar  Defects—  Two-  Dimensional Imperfections
Point defects and linear defects are acknowledgments that crystalline materials 
cannot be made  flaw-  free. These imperfections exist in the interior of each of 
these materials. But we must also consider that we are limited to a finite amount 
of any material and that material is contained within some boundary surface. This 
surface is, in itself, a disruption of the  atomic-  stacking arrangement of the crystal. 
There are various forms of planar defects. We shall briefly list them, beginning 
with the one that is the simplest geometrically.

Figure  4.14 illustrates a twin boundary, which separates two crystalline 
regions that are, structurally, mirror images of each other. This highly symmetri-
cal discontinuity in structure can be produced by deformation (e.g., in bcc and 
hcp metals) and by annealing (e.g., in fcc metals).

All crystalline materials do not exhibit twin boundaries, but all must have a 
surface. A simple view of the crystalline surface is given in Figure 4.15. This sur-
face is little more than an abrupt end to the regular atomic stacking arrangement. 
One should note that this schematic illustration indicates that the surface atoms 
are somehow different from interior (or “bulk”) atoms. This is the result of dif-
ferent coordination numbers for the surface atoms leading to different bonding 
strengths and some asymmetry. A more detailed picture of  atomic-  scale surface 

in Figure 3.5, this direction is also a line of contact for atoms in an 
fcc structure. Again,

 # b #  =  r = 2RAl = 2(0.143 nm)

 = 0.286 nm.

PRACTICE PROBLEM 4.4

Calculate the magnitude of the Burgers vector for an hcp metal, Mg. 
(See Example 4.4.)

Twin boundary

FIGURE 4.14 A twin boundary separates two crystalline regions that are, structurally, 
mirror images of each other.

M04_SHAC3403_08_GE_C04.INDD   130 2/19/15   1:09 AM

�A:�C!D?GJ=���:E!.��3)LJG=M�L%G)�LG�6:L!J%:D.���%!)�!�?GJ�1)#%)!!J.��2DG�:D�1=%L%G)��7!:J.G)�1=M�:L%G)�5%E%L!=�����
��7JG8M!.L�1�GGC�/!)LJ:D�
���������ALL+���!�GGC�!)LJ:D�+JGIM!.L��GE�D%��!LAP�=!L:%D�:�L%G)-=G�30,
��	����
/J!:L!=�?JGE�!LAP�G)����� �� �
��������
�

/
G+

2J
%#

AL
�Q

��
��


�
�7

!:
J.

G)
�1

=M
�:

L%G
)�

5%
E

%L!
=�

�.
DD�

J%#
AL

.�
J!

.!
J1

!=
�



 SECTION 4.4 Planar  Defects— Two- Dimensional Imperfections 131

geometry is shown in Figure 4.16. This Hirth–Pound* model of a crystal surface 
has elaborate ledge systems rather than atomically smooth planes.

The most important planar defect for our consideration in this introduc-
tory course occurs at the grain boundary, the region between two adjacent 
single crystals, or grains. In the most common planar defect, the grains meeting 
at the boundary have different orientations. Aside from the electronics industry, 
most practical engineering materials are polycrystalline rather than in the form 
of single crystals. The predominant microstructural feature of many engineer-
ing materials is the grain structure (Figure 4.17). Many materials’ properties are 
highly sensitive to such grain structures. What, then, is the structure of a grain 
boundary on the atomic scale? The answer depends greatly on the relative orien-
tations of the adjacent grains.

Figure 4.18 illustrates an unusually simple grain boundary produced when 
two adjacent grains are tilted only a few degrees relative to each other. This tilt 
boundary is accommodated by a few isolated edge dislocations (see Section 4.3). 
Most grain boundaries involve adjacent grains at some arbitrary and rather large 
misorientation angle. The  grain-  boundary structure in this general case is con-
siderably more complex than that shown in Figure  4.18. However, significant 
progress has been made in recent decades in understanding the nature of the 
structure of the general,  high-  angle grain boundary. Advances in both electron 
microscopy and computer modeling techniques have played primary roles in this 
improved understanding.

These theoretical and experimental studies of  high-  angle boundaries have 
indicated that the simple,  low-  angle model of Figure 4.18 serves as a useful anal-
ogy for the  high-  angle case. Specifically, a grain boundary between two grains at 
some arbitrary, high angle will tend to consist of regions of good correspondence 

At ledge

Kink

In surface

Adsorbed on
the surface

In ledge

FIGURE 4.16 A more detailed model of the elaborate ledgelike structure of the surface of 
a crystalline material. Various positions are indicated by shaded atoms.

FIGURE 4.15 Simple 
view of the surface of a 
crystalline material.

*John Price Hirth (1930–   ) and Guy Marshall Pound (1920–1988), American metallurgists, formulated 
their model of crystal surfaces in the late 1950s after careful analysis of the kinetics of vaporization.
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132 CHAPTER 4 Crystal Defects and Noncrystalline  Structure— Imperfection

separated by  grain-  boundary dislocations (GBDs), linear defects within the 
boundary plane. The GBD associated with  high-  angle boundaries tend to be sec-
ondary in that they have Burgers vectors different from those found in the bulk 
material ( primary dislocations).

With  atomic-  scale structure in mind, we can return to the microstructural 
view of grain structures (e.g., Figure 4.17). In describing microstructures, it is use-
ful to have a simple index of grain size. A frequently used parameter standard-
ized by the American Society for Testing and Materials (ASTM) is the  grain-  size 
number, G, defined by

 N = 2G - 1, (4.1)

where N is the number of grains observed in an area of 1 in.2 (=  645 mm2) on a 
photomicrograph taken at a magnification of 100 times (100*).

FIGURE 4.17 Typical optical micrograph of a grain 
structure, 100* . The material is a  low-  carbon steel. 
The grain boundaries have been lightly etched with a 
chemical solution so that they reflect light differently 
from the polished grains, thereby giving a distinctive 
contrast. (From Metals Handbook, 8th ed., Vol. 7: 
Atlas of Microstructures of Industrial Alloys, 
American Society for Metals, Metals Park, OH, 1972.)

D =
u
 b

b
u

FIGURE 4.18 Simple  grain-  boundary 
structure. This is termed a tilt 
boundary because it is formed when 
two adjacent crystalline grains are 
tilted relative to each other by a few 
degrees (u). The resulting structure is 
equivalent to isolated edge dislocations 
separated by the distance b>u,  
where b is the length of the Burgers 
vector, b. 

Micrometer-scale grain sizes such 
as those seen in this micrograph 
are typical of many common 
metal alloys.

M04_SHAC3403_08_GE_C04.INDD   132 2/19/15   1:09 AM

�A:�C!D?GJ=���:E!.��3)LJG=M�L%G)�LG�6:L!J%:D.���%!)�!�?GJ�1)#%)!!J.��2DG�:D�1=%L%G)��7!:J.G)�1=M�:L%G)�5%E%L!=�����
��7JG8M!.L�1�GGC�/!)LJ:D�
���������ALL+���!�GGC�!)LJ:D�+JGIM!.L��GE�D%��!LAP�=!L:%D�:�L%G)-=G�30,
��	����
/J!:L!=�?JGE�!LAP�G)����� �� �
��������
�

/
G+

2J
%#

AL
�Q

��
��


�
�7

!:
J.

G)
�1

=M
�:

L%G
)�

5%
E

%L!
=�

�.
DD�

J%#
AL

.�
J!

.!
J1

!=
�



 SECTION 4.4 Planar  Defects— Two- Dimensional Imperfections 133

Although the  grain-  size number is a useful indicator of average grain size, it 
has the disadvantage of being somewhat indirect. It would be useful to obtain an 
average value of grain diameter from a microstructural section. A simple indica-
tor is to count the number of grains intersected per unit length, nL, of a random 
line drawn across a micrograph. The average grain size is roughly indicated by the 
inverse of nL, corrected for the magnification, M, of the micrograph. Of course, 
one must consider that the random line cutting across the micrograph (in itself, 
a random plane cutting through the microstructure) will not tend, on average, to 
go along the maximum diameter of a given grain. Even for a microstructure of 
uniform size grains, a given planar slice (micrograph) will show various size grain 
sections (e.g., Figure 4.17), and a random line would indicate a range of segment 
lengths defined by  grain-  boundary intersections. In general, then, the true aver-
age grain diameter, d, is given by

 d =
C

nLM
, (4.2)

where C is some constant greater than 1. Extensive analysis of the statistics of 
grain structures has led to various theoretical values for the constant, C. For typi-
cal microstructures, a value of C = 1.5 is adequate.

EXAMPLE 4.6

Calculate the  grain-  size number, G, for a micrograph for which you 

measure 8.04  
grains

in.2
  at 100* .

SOLUTION
From Equation 4.1,

N = 2(G - 1)

EXAMPLE 4.5

Calculate the separation distance of dislocations in a  low-  angle (u = 2°) 
tilt boundary in aluminum.

SOLUTION
As calculated in Example 4.4b,

# b # = 0.286 nm.

From Figure 4.18, we see that

 D =
# b #
u

 =
0.286 nm

2° * (1 rad>57.3°)
= 8.19 nm.
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134 CHAPTER 4 Crystal Defects and Noncrystalline  Structure— Imperfection

 4.5  Noncrystalline  Solids—  Three-  Dimensional 
Imperfections
Some engineering materials lack the repetitive, crystalline structure. These 
noncrystalline, or amorphous, solids are imperfect in three dimensions. The 
 two-  dimensional schematic of Figure  4.19(a) shows the repetitive structure of 
a hypothetical crystalline oxide. Figure  4.19(b) shows a noncrystalline version 
of this material. The latter structure is referred to as the Zachariasen* model 
and, in a simple way, it illustrates the important features of oxide glass struc-
tures. (Remember from Chapter 1 that glass generally refers to a noncrystalline 
material with a chemical composition comparable to that of a ceramic.) The 
building block of the crystal (the AO3 -

3  “triangle”) is retained in the glass; that 
is,  short-  range order (SRO) is retained. But  long-  range order (LRO)—that is, 
 crystallinity—  is lost in the glass. The Zachariasen model is the visual definition 
of the random network theory of glass structure, which is the analog of the point 
lattice associated with crystal structure.

Our first example of a noncrystalline solid was the traditional oxide glass 
because many oxides (especially the silicates) are easy to form in a noncrystalline 
state, which is the direct result of the complexity of the oxide crystal structures. 
Rapidly cooling a liquid silicate or allowing a silicate vapor to condense on a cool 
substrate effectively “freezes in” the random stacking of silicate building blocks 

or

 G =
ln  N
ln 2

+ 1

 =
ln(8.04)

ln 2
+ 1

 = 4.01.

PRACTICE PROBLEM 4.5

In Example  4.5, we find the separation distance between disloca-
tions for a 2° tilt boundary in aluminum. Repeat this calculation for 
(a) u = 1° and (b) u = 5°. (c) Plot the overall trend of D versus u 
over the range u = 0 to 5°.

PRACTICE PROBLEM 4.6

Find the  grain-  size number, G, for the case described in Example 4.6 
if the micrograph was taken at a magnification of 300*  rather than 
100* .

*William Houlder Zachariasen (1906–1980),  Norwegian-  American physicist, spent most of his 
career working in  x-  ray crystallography. However, his description of glass structure in the early 1930s 
became a standard definition for the structure of this noncrystalline material.
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