
depend on material choice and the way the material is processed. Much can
be said about this, but not here; for now the focus is on structured data and
documentation.

That’s the essential background. Now for the properties themselves.

3.4 MATERIAL PROPERTIES AND THEIR UNITS
Each material can be thought of as having a set of attributes or properties.
The combination that characterizes a given material is its property profile.
Property profiles are assembled by systematic testing. In this section we
scan the nature of the tests and the definition and units of the properties (see
Table 3.1). Property values are listed in Appendix A. Units are given here in
the SI system. Conversion factors to other systems are printed on the inside
front and back cover of the book.

General properties
The density, ρ (units: kg/m3), is the mass per unit volume. We measure it
today as Archimedes did: by weighing in air and in a fluid of known density.

The price, Cm (units: $/kg), spans a wide range. Some cost as little as $0.2/kg,
others as much as $1,000/kg. Prices, of course, fluctuate, and they depend on
the quantity you want and on your status as a “preferred customer” with your
chosen vendor. Despite this uncertainty, it is useful to have an approximate
price in the early stages of material selection.

Mechanical properties
The elastic modulus, E (units: GPa or
GN/m2), is the slope of the initial,
linear-elastic, part of the stress-strain
curve (Figure 3.3). Young’s modu-
lus, E, describes response to tensile
or compressive loading; the shear
modulus, G, describes response to
shear loading; and the bulk modu-
lus, K, describes the response to
hydrostatic pressure. Poisson’s ratio,
ν, is the negative of the ratio of the
lateral strain, ε2, to the axial strain,
ε1, in axial loading:

ν = − ε2
ε1
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The stress-strain curve for a metal, showing the
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In reality, moduli measured as slopes of stress-strain curves are inaccurate,
often low by a factor of 2 or more, because of contributions to the strain
from inelasticity, creep, and other factors. Accurate moduli are measured
dynamically: by exciting the natural vibrations of a beam or a wire or by
measuring the velocity of sound waves in the material.

In an isotropic material, the moduli are related in the following ways:

E = 3G
1+G/3K

G¼ E
2ð1+ νÞ

K ¼ E
3ð1−2νÞ (3.1)

Commonly,

ν≈ 1/3

when

G≈ 3
8
E

and

K ≈ E (3.2a)

Elastomers are exceptional. For these,

ν≈ 1/2

when

G≈ 1
3
E

and

K >>E (3.2b)

Data sources like those described in Appendix D list values for all four
moduli. In this book we examine data for E; approximate values for the
others can be derived from the (3.2) equations when needed.

Estimating moduli

Young’s modulus E for copper is 124 GPa; its Poisson’s ratio ν is 0.345. What is its shear
modulus, G?

Answer
Inserting the values for E and ν in the central equation (3.1) gives G = 46.1 GPa. The
measured value is 45.6 GPa, a difference of only 1%.
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The strength, σf (units: MPa or MN/m2), of a solid requires careful definition.
For metals, we identify σf with the 0.2% offset yield strength σy (see
Figure 3.3), that is, the stress at which the stress-strain curve for axial load-
ing deviates by a strain of 0.2% from the linear-elastic line. It is the same in
tension and compression. For polymers, σf is identified as the stress at
which the stress-strain curve becomes markedly nonlinear, at a strain
typically of 1% (Figure 3.4). This may be caused by shear yielding: the
irreversible slipping of molecular chains; or it may be caused by crazing:
the formation of low-density, crack-like volumes that scatter light, making
the polymer look white. Polymers are a little stronger (≈ 20%) in compres-
sion than in tension.

Strength, for ceramics and glasses, depends strongly on the mode of load-
ing (Figure 3.5). In tension, “strength” means the fracture strength, σt. In
compression it means the crushing strength σc, which is much greater;
typically

σc = 10 to 15 σt (3.3)

When a material is difficult to grip, as is a ceramic, its strength can be
measured in bending. The flexural strength or modulus of rupture, σflex (units:
MPa) is the maximum surface stress in a bent beam at the instant of failure
(Figure 3.6). One might expect this to be the same as the strength measured in
tension, but for ceramics it is greater by a factor of about 1.3 because
the volume subjected to this maximum stress is small and the probability of
a large flaw lying in it is small also; in simple tension all flaws see the same
stress.
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The strength of a composite is best
defined by a set deviation from
linear-elastic behavior; often an off-
set of 0.5% is taken. Composites
that contain fibers, including natural
composites such as wood, are a
little weaker (up to 30%) in com-
pression than tension because fibers
buckle. In subsequent chapters, σf
for composites means the tensile
strength.

Strength, then, depends on material
class and on mode of loading. Other
modes of loading are possible: shear,
for instance. Yield under multiaxial
loads is related to that in simple

tension by a yield function. For metals, the Von Mises yield function is a good
description:

ðσ1− σ2Þ2+ ðσ2− σ3Þ2 + ðσ3− σ1Þ2 = 2 σf 2 (3.4)

where σ1, σ2, and σ3 are the principal stresses, positive when tensile; σ1,
by convention, is the greatest or most positive; σ3, the smallest or least
positive. For polymers the yield function is modified to include the effect
of pressure:

ðσ1− σ2Þ2+ ðσ2− σ3Þ2 + ðσ3− σ1Þ2 = 2 σf 2
1+ β p

K

! "2
(3.5)

where K is the bulk modulus of the polymer, β ≈ 2 is a numerical coeffi-
cient that characterizes the pressure dependence of the flow strength, and
the pressure p is defined by

p = − 1
3
ðσ1 + σ2 + σ3Þ

For ceramics, a Coulomb flow law is used:

σ1 −Bσ2 = C (3.6)

where B and C are constants.

The tensile (or ultimate) strength σts (units: MPa) is the nominal stress at
which a round bar of the material, loaded in tension, separates (Figure 3.3).
For brittle solids—ceramics, glasses, and brittle polymers—it is the same as
the failure strength in tension. For metals, ductile polymers, and most
composites, it is greater than the yield strength, σy, by a factor of between
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FIGURE 3.6
The modulus of rupture (MOR) is the surface
stress at failure in bending. It is equal to, or
slightly larger than, the failure stress in tension.
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1.1 and 3 because of work hardening or, in the case of composites, load
transfer to the reinforcement.

Cyclic loading can cause a crack to nucleate and grow in a material,
culminating in fatigue failure. For many materials there exists a fatigue
or endurance limit, σe (units: MPa), illustrated by the Δσ − Nf curve of
Figure 3.7. It is the stress amplitude Δσ below which fracture does not
occur, or occurs only after a very large number (Nf > 107) of cycles.

Tensile and compression tests are not always convenient: A large sample is
needed and the test destroys it. The hardness test gives an approximate,
nondestructive, measure of the strength. The hardness, H (SI units: MPa) of a
material is measured by pressing a pointed diamond or hardened steel ball
into the material’s surface (Figure 3.8). The hardness is defined as the indenter

force divided by the projected area of the indent. It
is related to the quantity we have defined as σf by

H≈3σf (3.7)

This, in the SI system, has units of MPa. Hardness
is commonly reported in a bewildering array of
other units, the most common of which is the
Vickers Hv scale with units of kg/mm2. It is related
to H in the units used here by

Hv =
H
10

A conversion chart for five hardness scales, relat-
ing them to yield strength, appears in Figure 3.9.

The toughness, G1c (units: kJ/m
2), and the fracture

toughness, K1c (units: MPa/m1/2 or MN/m1/2), measure
the resistance of a material to the propagation of a
crack. The fracture toughness is measured by loading

Using yield functions

A metal pipe of radius r and wall thickness t carry an internal pressure p. The pressure gen-
erates a circumferential wall stress of σ1 = pr/t, an axial wall stress σ2 = pr/2t. At what pres-
sure will the pipe first yield?

Answer
Setting σ2 = σ1/2, σ3 = 0 and σf = σy in Equation (3.4) gives the yield condition
σ1 = ð2/

ffiffiffi
3

p
Þσy . Thus the pressure p* that just causes first yield is p$ = 2ffiffi

3
p

t
r σy .
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FIGURE 3.7
The endurance limit, σe, is the cyclic stress that causes failure
in Nf = 107 cycles.
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a sample containing a deliberately
introduced crack of length 2c (Figure
3.10), recording the tensile stress σ* at
which the crack propagates. The quan-
tity K1c is then calculated from

K1c = Yσ$
ffiffiffiffiffi
πc

p
(3.8)

and the toughness from

G1c =
K2
1c

Eð1+ vÞ
(3.9)

where Y is a geometric factor, near
unity, that depends on details of the

Lo
ad

 F

Area A

H = F/A

Load F

Contact area A

Load F

Vickers

Hardness

Projected area A

Rockwell, Brinell

FIGURE 3.8
Hardness is measured as the load, F, divided
by the projected area of contact, A, when a
diamond-shaped indenter is forced into the
surface.

100

200

300

400

500

600

700

800

900

Mohs

1
2
3

4

5

6

7

8

9
Vickers

Brinell

100
200
300
400
500
600
700
800
900

1000

0

1600
1500
1400
1300
1200
1100

1800
1700

1900
2000Rockwell C

10
20
30
40

50

60

70

80

Rockwell A

60
65
70

75

80

85

90

Approximate-
yield strength, MPa

500

1000

1500

2000

2500

3000

3500

0

5500

5000

4500

4000

6000

FIGURE 3.9
Commonly used scales of hardness related to each other and to the yield strength.

3.4 Material Properties and Their Units 43



sample geometry, E is Young’s modulus, and ν is Poisson’s ratio. Measured
in this way K1c and G1c have well-defined values for brittle materials
(ceramics, glasses, and many polymers). In ductile materials a plastic zone
develops at the crack tip, introducing new features into the way in which
cracks propagate that necessitate more involved characterization. Values for
K1c and G1c are, nonetheless, cited, and are useful as a way of ranking
materials.

The loss coefficient, η (a dimensionless quantity), measures the degree to which
a material dissipates vibrational energy (Figure 3.11). If a material is loaded
elastically to a stress, σmax, it stores an elastic energy

U =
Iσmax

0

σdε ≈ 1
2

σ2max

E

K1c= σ ∗ (πc)1/2
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FIGURE 3.10
The fracture toughness, K1c, measures the resistance to the propagation of a crack. The test specimen
containing a crack of length 2c fails at stress σ*. The fracture toughness is then K1c ¼ Y σ$

ffiffiffiffiffi
!c

p

where Y is a constant near unity.

Strength from hardness

A steel has a hardness of 50 on the Rockwell C scale. Approximately what is its Vickers
hardness and yield strength?

Answer
The chart of Figure 3.9 shows that the Vickers hardness corresponding to a Rockwell C value
of 50 is approximately Hv = 500 and the yield strength is approximately 1,700 MPa.
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per unit volume. If it is loaded and then
unloaded, it dissipates an energy:

ΔU =
I

σdε

The loss coefficient is

η = ΔU
2πUmax

(3.10)

where Umax is the stored elastic energy at peak
stress. The value of η usually depends on the
time scale or frequency of cycling.

Other measures of damping include the specific
damping capacity, D = ΔU/U, the log decrement,
Δ (the log of the ratio of successive amplitudes
of natural vibrations), the phase lag, δ, between
stress and strain, and the “Q” factor or resonance
factor, Q. When damping is small (η < 0.01)
these measures are related by

η = D
2π

= Δ
π

= tan δ = 1
Q

(3.11)

but when damping is large, they are no longer equivalent.

Wear, the loss of material when surfaces slide against each other, is a multibody
problem. Nevertheless, it can, to a degree, be quantified. When solids
slide (Figure 3.12), the volume of material lost from one surface, per unit dis-
tance slid, is called the wear rate, W (units: m2). The wear resistance of the
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FIGURE 3.11
The loss tangent η measures the fractional energy dissipated in a
stress-strain cycle.

Using fracture toughness

A glass floor panel contains micro-cracks up to 2 microns in length. Glass has a fracture
toughness of K1c = 0.6 MPa.m1/2. When the panel is walked upon, stresses as high as
30 MPa appear in it. Is it safe?

Answer
The stress required to make a 2-micron crack (so c = 10−6 m) propagate in glass with
a fracture toughness of K1c = 0.6 MPa.m1/2, using Equation 3.8 with Y = 1, is

σc = K1c/
ffiffiffiffiffiffi
πc

p
= 339 MPa

The panel is safe.
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surface is characterized by the Archard wear constant, KA (units: 1/MPa) defined
by the equation

W
A

= KA P (3.12)

where A is the area of the slider surface and P is
the normal force pressing it onto the other surface.
Approximate data for KA appear in Chapter 4, but
must be interpreted as the property of the sliding
couple, not of just one member of it.

Thermal properties
Two temperatures, the melting temperature, Tm, and
the glass temperature, Tg (units for both: K or C), are
fundamental because they relate directly to the
strength of the bonds in the solid. Crystalline solids
have a sharp melting point, Tm. Noncrystalline solids
do not; the temperature Tg characterizes the transition
from true solid to very viscous liquid. It is helpful, in
engineering design, to define two further tempera-
tures: the maximum and minimum service temperature,
Tmax and Tmin (both: K or C). The first tells us the
highest temperature at which the material can rea-
sonably be used without oxidation, chemical change,

Using loss coefficients

A bell with a natural frequency of f = 1,000 Hz is made of a material with a loss coefficient
of η = 0.01. For how long will it ring after being struck? If the material is replaced by one of
low damping with η = 10−4 how long will it ring? (Assume the ring has ended when the
amplitude of oscillation A has fallen to one-hundredth of its initial value.)

Answer
Let A and A + dA be the amplitudes of the successive cycles (dA is negative). Then

Log = A

A + dA

$ %
= Δ = πη from which

dA

Adη
= 1

10πη
− 1

Integrating over n cycles gives ln A

A0

= 1

10π η
−1

$ %
n where A0 is the initial amplitude. When A

has fallen to 0.01 A0, the term ln(A/A0) = −4.6, giving n = 4:6 10π η

10π η − 1

$ %
. Thus a bell with

η = 0.01 will ring for n = 66 cycles, giving a time n/f = 66 milliseconds. A bell with η = 10−4

will ring for n = 6,400 cycles and a time of n/f 6.4 seconds.
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FIGURE 3.12
Wear is the loss of material from surfaces when they slide.
The wear resistance is measured by the Archard wear
constant, KA, defined in the text.
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or excessive creep becoming a problem. The second is the temperature below
which the material becomes brittle or otherwise unsafe to use.

It costs energy to heat a material. The heat capacity or specific heat (units J/kg.K)
is the energy to heat 1 kg of a material by 1 K. The measurement is usually
made at constant pressure (atmospheric pressure) so it is given the symbol Cp.
When dealing with gases, it is more usual to measure the heat capacity at
constant volume (symbol Cv), and for gases this differs from Cp. For solids the
difference is so slight that it can be ignored, and we shall do so here. The heat
capacity is measured by calorimetry (Figure 3.13), which is also the standard
way of measuring the glass temperature, Tg. A measured quantity of energy
(here, electrical energy) is pumped into a sample of material of known mass.
The temperature rise is measured, allowing the energy/kg.K to be calculated.
Real calorimeters are more elaborate than this, but the principle is the same.

Calculating wear

A steel slider oscillates on a dry steel substrate at frequency f = 0.2 Hz and an amplitude
a = 2 mm under a normal pressure P = 2 MPa. The Archard wear constant for steel on steel
is KA = 3 × 10−8 (MPa)−1. By how much will the surface of the slider have been reduced
in thickness after a time t = 100 hours?

Answer
The distance slid in 100 hours is d = 4 a f t m. The thickness x removed from the slider over
the time t = 3.6 × 105 is

x = Volume removed
Area A

= 4 a f t KA P = 3:5 × 10−5m = 36 μm
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FIGURE 3.13
The heat capacity—the energy to raise the temperature of 1 kg of material by 1°C.
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The rate at which heat is conducted through a solid at steady state (meaning
that the temperature profile does not change with time) is measured by the
thermal conductivity, λ (units: W/m.K). Figure 3.14 shows how it is measured:
by recording the heat flux q (W/m2) flowing through the material from a sur-
face at higher temperature T1 to a lower one T2 separated by a distance X. The
conductivity is calculated from Fourier’s law:

q = −λ dT
dX

= λ
ðT1−T2Þ

X
(3.13)

The measurement is not, in practice, easy (particularly for materials with
low conductivities), but reliable data are now generally available.

Using specific heat

How much energy is required to heat a 100 mm cube of copper from room temperature
(20°C) to its melting point?

Answer
Data for melting point, Tm, specific heat, Cp, and density, ρ, are listed in Appendix A. The
values for copper are Tm = 1,082°C, Cp = 380 J/kg.K and ρ = 8,930 kg/m3. The mass of cop-
per in the cube is ρV = 8.93 kg. The energy to heat it to ΔT = 1,062°C is

ρV Cp ΔT = 3:6 MJ

(The energy in a liter of gasoline is 35 MJ.)
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FIGURE 3.14
The thermal conductivity λ measures the flux of heat driven by a temperature gradient dT/dX.
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When heat flow is transient, the flux depends instead on the thermal
diffusivity, a (units: m2/s), defined by

a = λ
ρCp

(3.14)

where ρ is the density and Cp is the heat capacity. The thermal diffusivity
can be measured directly by measuring the decay of a temperature pulse
when a heat source, applied to the material, is switched off; or it can be
calculated from λ, via the last equation. The distance x heat diffuses in a
time t is approximately

x ≈
ffiffiffiffiffiffiffiffiffi
2 α t

p
(3.15)

Most materials expand when they are heated (Figure 3.15). The thermal
strain per degree of temperature change is measured by the linear thermal-
expansion coefficient, α (units: K−1 or, more conveniently, “microstrain/°C”
or 10−6°C−1). If the material is thermally isotropic, the volume expansion,

Steady state heat flow

A heat exchanger has an exchange area of A = 0.5 m2. It passes heat from a fluid at
temperature T1 = 100°C to a second fluid at T2 = 20°C. The exchange wall is made of
copper sheet (thermal conductivity λ = 350 W/m.K) with a thickness X = 2 mm. How much
energy flows from one fluid to the other in one hour?

Answer
The temperature gradient dT/dX = 80/0.002 = 40,000°C /m. The total energy Q that passes
across the area A over a time t = 3,600 seconds is

Q = A t q = A t λ dT
dX

= 2:5× 1010J = 25GJ

Transient heat flow

You pour boiling water into a tea-glass with a wall thickness x = 3 mm. How many
seconds have you got to carry it to the table before it becomes to hot to hold? (The thermal
conductivity of glass is λ = 1.1 W/m.K, its density is ρ = 2,450 kg/m3 and its heat capacity
Cp = 800 J/kg.K.)

Answer
Inserting the data into Equation (3.14) gives a thermal diffusivity for glass of a = 5.6 ×
10−7 m2/s. Inserting this into Equation (3.13) gives the approximate time

t % x 2

2a
= 8 seconds
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per degree, is 3α. If it is anisotropic, two or more coefficients are required,
and the volume expansion becomes the sum of the principal thermal strains.

The thermal shock resistance ΔTs (units: K or C) is the maximum temperature
difference through which a material can be quenched suddenly without
damage. I, and the creep resistance are important in high-temperature design.
Creep is the slow, time-dependent deformation that occurs when materials
are loaded above about 1

3
Tm or 2

3
Tg. Design against creep is a specialized

subject. Here we rely instead on avoiding the use of a material above its
maximum service temperature, Tmax, or , for polymers, the “heat deflection
temperature.”
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FIGURE 3.15
The linear-thermal expansion coefficient α measures the change in length, per unit length, when the
sample is heated.

Thermal stress

An aluminum pipe is rigidly clamped to the face of a concrete building. On a hot day the
face of the building in direct sun rises to 80°C, and because the expansion of the aluminum
is greater than that of concrete, stress appears in it. What is the value of the stress if the
original clamping was done on a day when the temperature was 20°C?

Answer
The expansion coefficient of aluminum is α = 22.5 × 10−6/°C, that of concrete is α = 9 ×
10−6/°C, using means of the ranges in Appendix A. The aluminum pipe is rigidly clamped,
so the difference in thermal strain Δ α ΔT = 13.5 × 10−6 × 60 = 8.1 × 10−4. This has to
be accommodated by elastic compression of the aluminum (modulus E = 75 GPa from
Appendix A), giving a stress Δ α ΔT E = 61 MPa. This is enough to cause a soft alumi-
num to yield.
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Electrical properties
The electrical resistivity, ρe (SI units Ω.m or, com-
monly, μΩ.cm), is the resistance of a unit cube
with unit potential difference between a pair of
its faces (Figure 3.16). It has an immense range,
from a little more than 10−8 in units of Ω.m for
good conductors (equivalent to 1 μΩ.cm) to
more than 1016 Ω.m (1024 μΩ.cm) for the best
insulators. The electrical conductivity, κe (units
Siemens per meter, S/m or (Ω.m)−1), is simply
the reciprocal of the resistivity.

When an insulator (or dielectric) is placed in an
electric field, it becomes polarized and charges
appear on its surfaces that tend to screen the
interior from the electric field. The tendency to
polarize is measured by the dielectric constant, εr,
a dimensionless quantity (Figure 3.17). Its value
for free space and, for practical purposes, for
most gasses, is 1. Most insulators have values between 2 and 30, though
low-density foams approach the value 1 because they are largely air.

What does εr measure? Two conducting plates separated by a dielectric
make a capacitor. Capacitors store charge. The charge, Q (units: coulombs),
is directly proportional to the voltage difference between the plates,
V (volts):

Q = CV (3.16)

where C (farads) is the capacitance. The capacitance of a parallel plate
capacitor of area A, separated by empty space (or by air), is

C = εo
A
t

(3.17)
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FIGURE 3.16
Electrical resistivity, ρe, is measured as the potential gradient,
V/L, divided by the current density, i/A. It is related to resistance,
R, by ρe = AR/L.

Resistivity and resistance

Tungsten has a conductivity of κe = 8.3 × 106 Siemens. What is the resistance of a tungsten
wire of radius r = 100 microns in diameter and length L = 1 m?

Answer
The resistivity of tungsten ρe = 1/κe = 1.2 × 10−7 Ω.m. The resistance R of the wire is

R = ρe
L
π r 2

= 3:8Ω
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where ε0 is the permittivity of free space (8.85 ×
10−12 F/m, where F is farads). If the empty space
is replaced by a dielectric, capacitance increases
because of its polarization. The field created by
the polarization opposes the field E, reducing
the voltage difference V needed to support the
charge. Thus the capacity of the condenser is
increased to the new value:

C = εA
t

(3.18)

where ε is the permittivity of the dielectric with the
same units as ε0. It is usual to cite not this but
the relative permittivity or dielectric constant, εr:

εr =
Cwith dielectric

Cno dielectric
= ε

εo
(3.19)

making the capacitance

C = εrεo
A
t

(3.20)

When charged, the energy stored in a capacitor is

1
2
QV = 1

2
CV2 (3.21)

and this can be large: “Super-capacitors” with capacitances measured in
farads store enough energy to power a hybrid car.

Polarization involves the small displacement of charge (of either electrons
or ions) or of molecules that carry a dipole moment when an electric field
is applied to the material. An oscillating field drives the charge between
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C(dielectric in place)

C(no dielectric)

Potential difference V

Breakdown
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+

−

Dielectric constant

V

*

FIGURE 3.17
Dielectric constant: a measure of the ability of an insulator
to polarize.

Stray capacitance

The time constant τ for charging or discharging a capacitor is

τ = R C

where R is the resistance of the circuit. That means that stray capacitance in an electronic
circuit (capacitance between neighboring conducting lines or components) slows its
response. What material choices minimize this?

Answer
Choosing materials with low resistivity ρe for the conductors (to minimize R) and choosing
insulators with low dielectric constant εr to separate them (to minimize C ), minimizes τ.

52 CHAPTER 3: Engineering Materials and Their Properties



two alternative configurations. This charge
motion is like an electric current that—if there
were no losses—would be 90° out of phase
with the voltage. In real dielectrics this current
dissipates energy, just as a current in a resistor
does, giving it a small phase shift, δ (Figure
3.18). The loss tangent, tan δ, also called the dis-
sipation factor, D, is the tangent of the loss
angle. The power factor, Pf, is the sine of the
loss angle. When δ is small, as it is for the
materials of interest here, all three are essen-
tially equivalent:

Pf ≈D≈ tan δ ≈ sin δ (3.22)

More useful, for our purposes, is the loss factor
L, which is the loss tangent times the dielectric
constant:

L = εr tan δ (3.23)

It measures the energy dissipated by a dielectric when in an oscillating field.
If you want to select materials to minimize or maximize dielectric loss, then
the measurement you want is L.

When a dielectric material is placed in a cyclic electric field of amplitude
E and frequency f, power P is dissipated and the field is correspondingly
attenuated. The power dissipated per unit volume (W/m3) is

P≈ f E2ε tan δ = f E2εoεr tan δ = f E2εoL (3.24)
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FIGURE 3.18
Dielectric loss, important in dielectric heating, as explained
in the text.

Dielectric heating

A nylon component is placed in a microwave cavity with a field strength E = 104 V/m and a
frequency f = 1010 Hz for a time t = 100 s. The dielectric loss factor for nylon is L = 0.1, its
density is ρ = 1130 kg/m3 and its heat capacity is Cp = 1650 J/kg.K. Assuming no heat loss,
how hot will the component become?

Answer
The heat generated by the field is Q = Pt = f E 2ε0 L t = 8.85 × 107 J/m3. The heat capacity of
nylon per unit volume is Cp ρ = 1.86 × 106 J/m3.K. The temperature rise, ΔT is

ΔT = f E2εo L t
Cpρ

= 47:6 &C
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where, as before, εr is the dielectric constant of the material and tan δ is its loss
tangent. This power appears as heat; the higher the frequency or the field
strength and the greater the loss factor L = εr tan δ, the greater the heating and
energy loss. Sometimes this dielectric loss is exploited in processing—for
example, in radio frequency welding of polymers.

The breakdown potential (units: MV/m) is the electrical potential gradient
at which an insulator breaks down and a damaging surge of current
flows through it. It is measured by increasing, at a uniform rate, a 60-Hz
alternating potential applied across the faces of a plate of the material
until breakdown occurs, typically at a potential gradient between 1 and
100 million volts per meter (units: MV/m).

Optical properties
All materials allow for some passage of light, although for metals it is
exceedingly small. The speed of light when in the material, v, is always less
than that in vacuum, c. A consequence is that a beam of light striking the
surface of such a material at an angle of incidence, α, enters the material at
an angle β, the angle of refraction. The refractive index, n (dimensionless), is

n = c
v
= sin α

sin β
(3.25)

It is related to the dielectric constant, εr, at the same frequency by

n≈
ffiffiffiffi
εr

p

The refractive index depends on wavelength and thus on the color of the
light. The denser the material, and the higher its dielectric constant, the
greater the refractive index. When n = 1, the entire incident intensity enters
the material, but when n > 1, some is reflected. If the surface is smooth and
polished, it is reflected as a beam; if rough, it is scattered. The percentage
reflected, R, is related to the refractive index by

R = n−1
n+1

! "2
× 100 (3.26)

As n increases, the value of R approaches 100%.

Eco-properties
The embodied energy (units MJ/kg) is the energy required to extract 1 kg of a
material from its ores and feedstock. The associated CO2 footprint (units: kg/kg)
is the mass of carbon dioxide released into the atmosphere during the
production of 1 kg of material. These and other eco-attributes are the subject
of Chapter 15.
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