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Abstract
Only meters below our feet, shallow aquifers serve as sustainable energy source and provide
freshwater storage and ecological habitats. All of these aspects are crucially impacted by the
thermal regime of the subsurface. Due to the limited accessibility of aquifers however,
temperature measurements are scarce. Most commonly, shallow groundwater temperatures are
approximated by adding an offset to annual mean surface air temperatures. Yet, the value of this
offset is not well defined, often arbitrarily set, and rarely validated. Here, we propose the usage of
satellite-derived land surface temperatures instead of surface air temperatures. 2 548 measurement
points in 29 countries are compiled, revealing characteristic trends in the offset between shallow
groundwater temperatures and land surface temperatures. Here it is shown that
evapotranspiration and snow cover impact on this offset globally, through latent heat flow and
insulation. Considering these two processes only, global shallow groundwater temperatures are
estimated in a resolution of approximately 1 km � 1 km. When comparing these estimated
groundwater temperatures with measured ones a coefficient of determination of 0.95 and a root
mean square error of 1.4 K is found.
1. Introduction

Sustainable water resources and energy supply are two
of the main challenges in today’s society (e.g. Gleeson
et al 2012, Gleeson et al 2016, Jaramillo and Destouni
2015), (Potocnik 2007, Kammen and Sunter 2016).
Shallow groundwater temperatures play a crucial role
in both of these challenges. For example, they affect
microbial activity in aquifers thus, giving a unique
insight into oxygen depletion in huge quantities of the
Earth’s water supply (Danielopol et al 2003), and are
the key factor to determining the usability and the
potential of shallow geothermal energy (Stauffer et al
2013, Zhu et al 2010, Rivera et al 2017). Additionally,
the temperatures of the surface and subsurface are
closely linked. The coupling between both is utilized to
reconstruct ground surface temperature histories
using both borehole temperature data (Taniguchi
et al 2005, Beltrami et al 2015) and noble gas
temperatures (Cey 2009), and to analyze the impact of
climate change on the subsurface (Taylor et al 2012,
Menberg et al 2014, Pollack et al 1998). There is
© 2017 IOP Publishing Ltd
growing interest in understanding the effect of the
thermal and hydrogeological regime of the subsurface
on climate (Maxwell and Kollet 2008). A main hurdle,
however, is the uncertainty of shallow groundwater
temperature (GWT) distribution. Since direct meas-
urements are scarce and measurement points are
limited, GWT is typically estimated by adding an offset
to annual mean surface air temperatures. While the
existence of this offset has long been discussed
(Kappelmeyer and Haenel 1974), its value has yet to
be validated on a larger scale.

In a closed system without latent heat, the surface
energy balance predicts near surface temperatures and
shallow subsurface temperatures to be in equilibrium.
Studies in warm or moderate climates have shown the
offset between these to be close to zero (Čermák et al
2014), however on the global scale it is highly variable.
Latent heat flow caused by evapotranspiration (ET)
plays a key role in the surface energy balance. Its effects
on surface climate have been thoroughly discussed
(Shukla and Mintz 1982) and it has been determined
that an increase in ET will decrease measured surface

mailto:susanne.benz@kit.edu
https://doi.org/10.1088/1748-9326/aa5fb0
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aa5fb0&domain=pdf&date_stamp=2017-2-28
https://doi.org/10.1088/1748-9326/aa5fb0


Land surface temperature

Groundwater temperature

40 °C

30 °C

20 °C

10 °C

0 °C

< -5 °C

35 °C

25 °C

15 °C

5 °C

Figure 1. Global map of land surface temperature (LST) and shallow groundwater temperature (GWT). LST is given as the 10 year
mean (01/2005–12/2014) of daily MODIS products MOD11A1 and MYD11A1. The bias towards cloud free days was corrected in
respect to seasonal cloud cover variations. (Multi)-annual mean GWTs were collected during the same time period in a depth of down
to 60 m below ground.
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temperatures (Sun et al 2016). Additionally, ET is
closely linked to natural precipitation and recharge
(Scanlon et al 2002). This effect is most often discussed
in regards to groundwater availability in changing
climates (Döll 2009, Shah 2009); however recharge
also affects shallow GWTs directly (Anderson 2005).
Still, the effect of ETon the offset between land surface
temperature (LST) and GWT is unknown.

In higher and colder latitudes the offset is often
dominated by snow. Here, with its low thermal
conductivity, the snow cover functions as an insulator
and prevents the conduction of cold surface temper-
atures into the subsurface layer (Zhang 2005). Studies
set in northern regions found subsurface temperatures
to be significantly warmer than surface temperatures
(Banks et al 2004, Hachem et al 2012).

On a regional scale, shallow GWT is also influenced
by amultitudeof factors such as anthropogenic heatflux
(Benz et al 2015), geothermal hot spots, groundwater
flow, and groundwater depth (Fan et al 2013) since
temperature typically increases with depth.

In this study the offset between surface and
subsurface temperatures is analyzed on a global scale.
Since annual mean surface air temperatures are only
available in areas, where long-term monitoring
stations are installed, we propose the use of
satellite-derived land surface temperatures (LST)
instead. By comparing a global dataset of measured
2

GWT with decadal mean LST, we determine and
analyze the offset DT ¼ GWT� LST and quantify the
influence from evapotranspiration (ET) and snow
cover. Other more regional influences cannot be
addressed globally. Finally, the offset and therefore
GWTs are estimated on a global scale using only
satellite-derived data.
2. Material and methods
2.1. Groundwater temperatures
Overall, 2548 shallow measurement points in 29
countries and two overseas territories were compiled
that provide (multi)-annual mean groundwater
temperatures (GWT) without a seasonal bias (figure 1,
table S1 stacks.iop.org/ERL/12/034005/mmedia). The
distribution of GWT data is uneven and has a bias
towards the northern hemisphere, with only 14% of all
measurement points being located south of the
equator. However, this is not considered crucial since
the offset between GWTand land surface temperature
(LST) in both hemispheres show similar behavior for
equal latitudes (figure S1). Because all measurement
points are south of 61° latitude, GWTs closer to the
polar region are not addressed. Following the
commonly used land cover classification system
(LCCS) and GlobCover (2009) data, we find that

http://stacks.iop.org/ERL/12/034005/mmedia


Environ. Res. Lett. 12 (2017) 034005
53% of all measurement points are located in
cultivated terrestrial areas and managed lands, 37%
in natural and semi-natural terrestrial vegetation, and
9% in artificial surfaces. A study in Germany found
GWTs under artificial surfaces and cultivated lands to
be elevated compared to their rural surrounding by
approximately 2.0± 0.7 K and 0.2± 0.8 K, respectively
(Benz et al 2017).

All measurements were performed in a depth of
less than 60 m, including springs, since this is the
minimum depth that a temperature signal penetrates
in 10 years (Taylor and Stefan 2009, Whittington et al
2009). However, the majority of the points correspond
to measurements in a depth of no less than 30 m. At
each measurement point, GWTs were read at least
once in the time frame of 01/Jan/2005 to 31/Dec/2014.
While temperatures measured in a depth of more than
20 m generally do not indicate any seasonal influences
(Beltrami and Kellman 2003), temperatures measured
above this depth do (Taylor and Stefan 2009). Hence,
the temperatures have to be measured uniformly over
the span of the various seasons to generate a bias-free
mean. To estimate whether the mean temperature of a
measurement location is biased by seasonal tempera-
ture variations, a variable called seasonal radius r is
introduced. It determines whether measurements were
taken uniformly over the span of the seasons (r = 0)
or if all measurements were taken in the same month
(r = 1). To determine r, every measurement of a time
series is first converted to a vector with a length of
1.0 and a direction corresponding to the month of
measurements. Next, the mean of all measurement-
vectors of a single measurement point is determined.
The length of the resulting mean vector is the seasonal
radius. Figure S2(a) gives an example of a well that was
measured twice, once in November and once in June.
Figure S2(b) depicts the seasonal radii of all analyzed
measurement points with a measurement depth of
less than 20 m located in France and its overseas
territories (table S1). The influence of this seasonal
radius on GWTs was analyzed and it was found that
measurement points with a seasonal radius� 0.25 can
be considered bias free (figure S3). Hence, the
following rules for measurement point selection were
determined:
�
 The maximum measurement depth is 60 m.
�
 If the measurement depth is � 20 m, only points
that have a seasonal radius of � 0.25 were
considered.
�
 If the measurement depth is not known, only
points that have a well depth � 60 m and a
seasonal radius � 0.25 were considered.
�
 If neither measurement depth nor well depth are
known but the raw data show seasonal variations
of more than 1 K, points with a seasonal radius
� 0.25 were considered.
3

�
 If temperatures were taken after pumping, only
points with a well depth between 20 m and 60 m
were considered.

2.2. Land surface temperatures
To determine the 10 year arithmetic mean
(01/2005–12/2014) of land surface temperatures
(LST) we used MODIS daily products MOD11A1
and MYD11A1 (Wan and Dozier 1996, Wan 1999), as
obtained from NASA’s TERRA and AQUA satellites,
courtesy of the NASA Land Processes Distributed
Active Archive Center (LP DAAC), USGS/Earth
Resources Observation and Science (EROS) Center,
Sioux Falls, South Dakota, https://lpdaac.usgs.gov.
Each satellite views the entire planet twice daily
giving four LSTmeasurements a day. MODIS-derived
LSTs have been previously validated by several studies
(Ermida et al 2014, Guillevic et al 2014,Wan et al 2002,
Trigo et al 2008). Because LSTs are only retrieved for
clear sky observations, they have a bias towards non
cloudy days. Due to the seasonal cycle of cloud cover
(Wylie and Menzel 1999), this ‘clear sky’-bias displays
in part as a seasonal bias. To consider this bias, the 10
year mean was determined in three steps. First, the
mean temperature of each month was determined for
the years 2005 to 2014. Out of these, the 10 year mean
for each month was determined before combining
them to a single 10 year mean map. This was
performed using Google Earth Engine and was
exported in a resolution of approximately 1 km� 1 km
(0.009°� 0.009°) (figure 1).

Over the analyzed 10 year time period no
significant change in global LST is observed (figure
S4). Hence, climate change was not consider when
comparing 10 year mean LSTs with GWTs that were
often measured only towards the end of the late
analyzed 10 year time period.

2.3. Evapotranspiration
Evapotranspiration data were gathered from the
Noah 2.7.1 model in the Global Land Data
Assimilation System (GLDAS) data products Version
1 (Rodell et al 2004) (spatial resolution: 0.24°). These
evapotranspiration data have previously been vali-
dated by several studies (Rodell et al 2011, Mueller
et al 2011, Wang et al 2011, Kato et al 2007). In this
study, the decadal mean (01/2005–12/2014) evapo-
transpiration (ET) was determined using the Google
Earth Engine and was exported in a resolution of
approximately 1 km � 1 km.

2.4. Snow days
Information on snow days was derived from MODIS
Terra and Aqua Snow Cover Daily L3 Global 500 m
Grid, Version 5 (Hall et al 2006), products MOD10A1
and MYD10A1, courtesy of the National Snow and
Ice Data Center (NSIDC). The data have previously
been validated by several studies (Gladkova et al 2012,

http://https://lpdaac.usgs.gov
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Figure 2. Relationship between (a) groundwater temperature (GWT) and land surface temperature (LST) and (b) estimated and
measured GWT. The line of equality is given in dark grey.
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Klein and Stroeve 2002, Tekeli et al 2006). Using
Google Earth Engine, the percentage of snow days in
the 10 years from 01/2005 to 12/2014 was determined
by dividing the number of days classified as ‘snow’ by
the sum of the days classified as either ‘no snow’ or
‘snow’. The data were exported in a resolution of
approximately 1 km � 1 km.

2.5. Estimating groundwater temperatures
In this study GWTs are estimated using satellite-derived
data only. Two distinct effects on the offset between
GWT and LST are quantified: snow cover insulates
warm groundwater temperatures and latent heat flux,
caused by evapotranspiration, factors into the surface
energy balance, thus decreasing LSTs. The total offset,
DTTotal ¼ DTET þ DTS can be described as the
superposition of the offsets caused by evapotranspira-
tion (DTET ) and the offsets caused by the duration of
snow cover (DTS). The latter is quantified as the
percentage of snow days during the analyzed 10 years.
Because both pairs (ET and latent heat, and snow days
and insulation) are linearly dependent, a linear fit
DTTotal ¼ DTET þ DTS ¼ a · ETð Þ þ b · snow daysð Þ
is used to estimate the global offset. Fitting was
performed in MATLAB R2013a with the function
‘nlinfit’ for nonlinear regression. The coefficients
are estimated using iterative least squares estimation.
Initial values are a ¼ 104K s ·m2

kg and b ¼ 7K. The 95%
prediction interval half-width for a newobservationwas
determined using the function ‘nlpredci’.

3. Results and discussion

The compiled ten year mean land surface temperatures
(LST) and (multi)-annual mean groundwater temper-
atures (GWT) are displayed in figure 1. For 83% of all
measurement points, GWTs are warmer than LST.
The average offset DT ¼ GWT�LST is 1.2 ± 1.5 K
(figure S6). The influence of GWTmeasurement depth
on the offset was analyzed for all measurement points
with a knownmeasurement depth (Austria, France and
4

its overseas territories, table S1). It revealed an increase
in temperature by only 0.02 Km�1 (figure S5), agreeing
well with other reported values such as the average UK
geothermal gradient of 0.026 Km�1 (Busby et al 2009)
and a simulate gradients of 024 K m�1 for a realistic
geothermal heat flux of 0.05 W m�2 (Wagner et al
2012). Consequently, the impact of depth on mean
groundwater temperature (GWT) was disregarded.

Overall the lowest offset is �6.1 K (LST: 16.5 °C;
GWT: 10.5 °C, daily measurements from 01/2013 to
05/2014) in a spring in the Black Rock Desert—
High Rock Canyon Emigrant Trails National Con-
servation Area, Nevada, USA (figure S7(b), table S1).
The highest offset of 11.0 K (LST: 2.0 °C; GWT:
13 °C, one measurement in 06/2005 at a depth in
between 21 and 40 m below ground) is measured in
Erdenet, Mongolia (figure S7(c), table S1). It is
plausible that the high GWT is caused by the
subsurface urban heat island phenomenon (Menberg
et al 2013), where GWTs are raised by anthropogen-
ically induced heat flow (Benz et al 2015) from
underground structures such as buildings or, in this
specific case, the local copper-molybdenum mine
(Battogtokh et al 2013).

Despite these extreme examples, global GWT and
LST values correlate well, with a Pearson correlation
coefficient of 0.97, a coefficient of determination (R2)
of 0.90 and a root mean square error (RMSE) of 1.9 K
(figure 2(a)). As expected, the data indicate that GWTs
are elevated compared to LSTs for the coldest and
warmest temperatures. These differences are caused by
the two distinct effects discussed previously: in areas
with lower temperatures snow cover insulates warm
groundwater temperatures during the winter month
raising the annual mean; in warmer and more humid
areas latent heat flux caused by evapotranspiration
(ET) factors into the surface energy balance, thus
decreasing LSTs. Several measurement points located
in moderate climate regions are affected by both
factors (figure S8). Hence, the offset between GWT
and LST is discussed as a superposition of an offset
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caused by ET and an offset caused by snow cover
(DTTotal ¼ DTET þ DTS).
3.1. Estimating groundwater temperatures
The influence of evapotranspiration (ET) on the
offset is displayed in figure 3(a). As expected, an
increase in ET raises DTET . However, measurement
points in arid regions such as Chile, the western USA,
and the Arabian Peninsula with a low ET have a
negative offset, indicating colder GWTs than LSTs
(figure S8(a)). Since the surface energy balance
predicts equilibrium between the surface and
subsurface temperatures in the absence of latent
heat, additional local causes such as irrigation must
be at play here. However, additional local studies are
required to fully understand the offset between GWT
and LST in these arid regions.

Figure 3(c) and figure S8(b) depict the influence of
surface snow cover on the offset between GWT and
LST. The data show that the percentage of snow days
increases annual mean GWTs and therefore raises the
offset DTS.

The best fit is obtained by the following solution:

DTTotal ¼ DTET þ DTS

¼ a · ETð Þ þ b · snow daysð Þ
¼ 3:5± 0:2ð Þ⋅104K m2⋅s

kg
⋅ET

¼ þ 6:6± 0:3ð ÞK ⋅ snow days ð1Þ

The half width of the confidence interval is given
as the uncertainty. The RMSE of the fit is 1.4 K.
Figures 3(a) and (c) display DTET and DTS

separately, and a surface plot of DTTotal is given in
5

figure S9. This fit implies an increase in the offset of
0.035 ± 0.002 K per mg m2 s�1 of ET and an increase
of 0.066 ± 0.003 K for each percent in snow days.
The determined DTTotal is added to LST to estimate
GWTs for all analyzed measurement points (figure 2
(b), figure S10). As expected, GWTs from urban areas
such as the data from Mikkeli, Finland (table S1,
figure S11(e)) are severely underestimated, on average
by 3.8 K, as heat flux from buildings has to be
considered as well (Benz et al 2016) for an accurate
estimation. Additionally, measured GWTs in (semi-)
arid regions with only minor ET, such as the Lower
Jordan Valley (figure S11(b)), are on average 2.3 K
lower than estimated GWTs. Here irrigation is
assumed to be the main source of recharge (Zemann
et al 2014). In spite of these local discrepancies,
estimated and measured GWT agree well. While they
correlate the same as LST and GWT (Pearson
correlation coefficient: 0.97), R2 increases by 0.05
to 0.95, and the RMSE (1.4 K) is improved by 0.5 K
compared to the one between GWT and LST.

By applying this method to global datasets of
decadal mean evapotranspiration and snow days
(figures 3(b) and 3(d)), a global map of the expected
offset was created (figure 4(a)). It ranges from 0 K in
the arid regions such as Northern Africa, the Arabian
Peninsula and central Australia to more than 6 K in the
polar regions. However, with no available measure-
ment points in such high latitudes, further research is
needed to validate these findings. The average half-
width of the 95% prediction interval is 2.76 ± 0.03 K
(figure S12). By adding the estimated offset to the
measured LSTs, shallow global groundwater tempera-
ture is estimated (figure 4(b)).
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4. Conclusion

The main focus of this study was on the global scale
offset between 10 year mean groundwater temper-
atures (GWT) and satellite-derived land surface
temperatures (LST). A total of 2 548 shallow GWT
measurement points in 29 countries and two overseas
territories are utilized to analyze the offset
DT ¼ GWT� LST. We find that GWTs are warmer
than LST in 83% of all measurement points. The
average offset is 1.2 ± 1.5 K with highest differences
between GWT and LST in both the warmest and
coldest areas of Earth. These high offsets are linked to
evapotranspiration, which alters the latent heat
flow and therefore surface energy balance, and snow
cover, which insulates warm GWTs during the winter.
We are able to quantify the influence from ET and
snow cover and to describe the global offset between
GWT and LST as a superposition of both effects.
Hence, global shallow groundwater temperatures
can be estimated using only satellite-derived data.
However, it is important to note that groundwater
6

flow is not yet considered. A previous study by
Benz et al (2016) found that, on a city scale, the
Pearson correlation coefficient between GWT and
LST can be increased by 6% to 10%, if groundwater
flow is scrutinized. Additionally, GWT anomalies
caused by other regional effects such as geothermal
hotspots, fossil groundwater and subsurface urban
heat islands cannot be resolved with the presented
method. Still, the proposed estimation technique
provides shallow global GWTs with a RMSE of
only 1.4 K and a coefficient of determination R2

of 0.95.
Additionally, the found link between the offset,

snow cover and evapotranspiration can be applied to
future climate scenarios. With above ground temper-
atures rising due to climate change (IPCC 2013)
GWTs are expected to increase as well. However,
climate change also impacts snow cover and evapo-
transpiration and we can therefore assume that GWTs
will increase at a different rate than LSTs. In areas
where snow cover is decreasing, our results imply that
the offset between GWT and LST will decrease and



Environ. Res. Lett. 12 (2017) 034005
GWTwill increase at a slower rate than LST. In areas
where the offset is predominantly dictated by
evapotranspiration (ET), declining ET will decrease
the offset and thus reduce GWT increase, whereas
rising ET will increase the offset and thus amplify the
overall GWT increase.
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