

Herz-Kreislauf- und Atmungs-System

Studierende HST, Pharmazeutische Wissenschaften Studierende der Medizin ETH

Polybook designed by Christina M. Spengler, Philipp Eichenberger

Gastransport im Blut

Lernziele

Sie können

- die verschiedenen Formen des O₂- und CO₂-Transportes darlegen
- die Einflussfaktoren auf die unterschiedlichen Transportarten erläutern^M
- die Messtechnik der transkutanen Sauerstoffsättigung erläutern

Information FS20

Zum Prüfungsstoff gehören:

- Der Inhalt dieses Kapitels, inkl. messtechnischer Informationen, die *im jeweils* verlinkten Kapitel des Teils Diagnostik des Atmungssystems beschrieben sind
- Antworten zu den Study Questions, welche der Vertiefung des Inhaltes, der Verknüpfung des Inhaltes mit weiteren Themen des 1. Studienjahres, sowie der kritischen Auseinandersetzung mit dem Populärwissen dienen. Sie sind im Kapitel Atmungssystem – Antworten zu Study Questions des Teils Study Questions & Answers zu finden

Nicht zum Prüfungsstoff gehören:

• <u>Textteile, Abschnitte und Links in grauer Schrift</u>. Diese Informationen sind für die speziell Interessierten gedacht, resp. zum Nachschlagen in späteren Jahren.

Gastransport

Sowohl O_2 wie CO_2 werden vorwiegend in chemisch gebundener Form im Blut transportiert. Bevor sie gebunden werden, diffundieren beide Gase ins Plasma, in dem sie in physikalisch gelöster Form vorliegen und mittels Blutgasanalyse bestimmt werden können. Die physikalische Transportkapazität des Plasmas für O_2 und CO_2 ist jedoch gering (C: Konzentration, α : Löslichkeitskoeffizient):

$$C O_2 = PO_2 \cdot \alpha O_2 = 3 \text{ ml } O_2 \cdot l^{-1} \text{ Plasma (bei PO}_2 95 \text{ mmHg, 0.3 Vol-% gelöst)}$$

 $C CO_2 = PCO_2 \cdot \alpha CO_2 = 30 \text{ ml } CO_2 \cdot l^{-1} \text{ Plasma (bei PCO}_2 40 \text{ mmHg, 3 Vol-% gelöst)}$

Durch den Übertritt der Gase in die chemische Bindung können jedoch immer wieder

neue Gasmoleküle gelöst werden.

Sauerstofftransport

Sauerstofftransport durch Hämoglobin

Bei der Aufnahme von Sauerstoff in das Lungenkapillarblut geht der Sauerstoff zunächst in physikalische Lösung. Da die Löslichkeit von Sauerstoff in wässrigen Medien sehr niedrig ist, liegen bei einem arteriellen PO₂ von 95 mmHg (12.63 kPa) nur ca. 3 ml O₂•l⁻¹ Blut in physikalischer Lösung vor. Bei einem Ruhesauerstoffverbrauch von 300 ml O₂• min⁻¹ müsste daher das Gewebe mit mehr als 100 l Blut • min⁻¹ perfundiert werden! Tatsächlich aber liegt die gemessene O₂-Konzentration des arteriellen Blutes bei ca. 200 ml•l⁻¹ Blut.

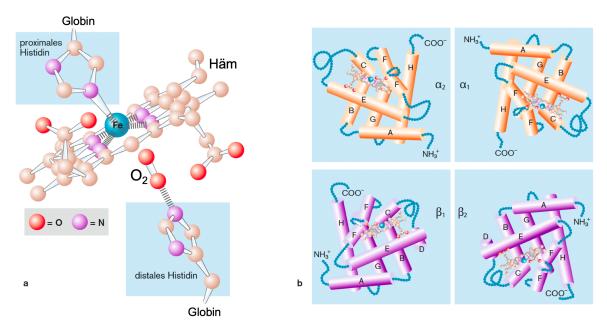
Durch das in den **Erythrozyten** (**Ec**) vorhandene Sauerstofftransportprotein **Hämoglobin** (**Hb**), das mit Sauerstoff eine reversible chemische Bindung eingehen kann, kommt es zu einer erheblichen Steigerung der O₂-Konzentration des Blutes: **1 g Hämoglobin** bindet ca. **1.34 ml O₂** (**Hüfner-Zahl**).

Parameter	Normalwert		
	Männer	Frauen	Einheit
Hb-Konzentration des Blutes (Hb)	155	145	g · I ⁻¹
O ₂ -Kapazität	9,4	8,7	mmol ⋅ l ⁻¹
	210	195	ml $O_2 \cdot l^{-1}$
P _{O2} bei Halbsättigung, P _{0,5}	3,6	3,6	kPa
	27	27	mmHg

Mittlere Normalwerte von Blutparametern bei erwachsenen Männern und Frauen. Quelle: Pape et al. Physiologie. Thieme Verlag.

Bei einer **Hämoglobinkonzentration von 150 g•l**⁻¹ **Blut** (vgl. Tabelle) können daher \sim 200 ml O₂•l⁻¹ Blut aufgenommen werden. Zusammengefasst lässt sich also feststellen, dass 1.5 % des Sauerstoffs im arteriellen Blut in physikalischer Lösung vorliegen, 98.5 % werden an Hämoglobin gebunden transportiert. Ein wichtiger funktioneller Begriff ist die sog. **O**₂- **Transportkapazität** (auch **O**₂-**Bindungskapazität** genannt). Sie beschreibt die maximal an Hämoglobin gebundene Menge an Sauerstoff und lässt sich über die Hüfner-Zahl und die Hämoglobinkonzentration berechnen:

$$\mathbf{O}_2$$
-Transportkapazität = Hüfner-Zahl (1.34 ml $O_2 \cdot \mathbf{g}^{-1}$ Hb) \cdot Hb ($\mathbf{g} \cdot \mathbf{l}^{-1}$ Blut)


Daraus folgt, dass Änderungen der Hämoglobinkonzentration einen unmittelbaren Einfluss auf das Sauerstoffangebot an die Körpergewebe haben.

Hämoglobinstruktur

Hämoglobin (Hb) ist ein tetrameres, aus vier Untereinheiten aufgebautes Protein (Tetramer) mit einem Molekulargewicht von ca. 64 500 g. Das adulte menschliche Hämoglobin A besteht zwei α- und zwei β-Proteinketten: Hb A ($\alpha_2\beta_2$). An jede dieser Ketten ist

als prosthetische Gruppe eine Hämgruppe – bestehend aus einem Porphyrinringsystem mit Fe²⁺ als Zentralatom – angelagert. Das Eisenatom ist über eine kovalente Bindung mit dem sog. proximalen Histidin der jeweiligen Globinkette verbunden (Abb. unten).

In wässriger Lösung würde das zweiwertige Eisenatom in Anwesenheit von Sauerstoff rasch oxidiert werden. Die Einbindung der Hämgruppe in die relativ hydrophobe Umgebung der Globinkette schützt das Eisen vor der Oxidation. Dies ist unbedingt erforderlich, denn nur an das zweiwertige Eisenatom kann Sauerstoff reversibel binden.

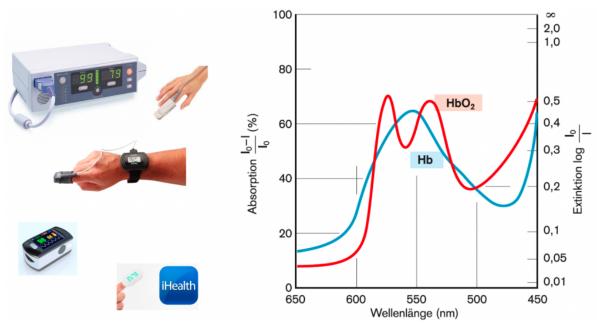
Aufbau des Hämoglobins. **a** Assoziation der Hämgruppe mit dem Globinrest. Die Hämgruppe ist über eine kovalente Bindung mit dem proximalen Histidin der Globinkette verbunden. Die reversible Anlagerung von Sauerstoff erfolgt zwischen dem zentralen Hämeisen und dem distalen Histidin. **b** Das Hämoglobintetramer besteht aus zwei α - und zwei β -Ketten mit überwiegend α -helikaler Struktur (Helices A-H). Quelle: Pape et al. Physiologie. Thieme Verlag. (modifiziert)

Sauerstoffbindung

Ein tetrameres Hämoglobinmolekül bindet vier Moleküle Sauerstoff oder anders ausgedrückt: 1 Mol Hämoglobin (64 500 g) kann 4 Mol Sauerstoff (89.6 l O_2) binden. Daraus ergibt sich für die Hüfner-Zahl der theoretische Maximalwert von 1.39 ml $O_2 \cdot g^{-1}$ Hb; tatsächlich wird aber mit einem Wert von 1.34 ml $O_2 \cdot g^{-1}$ Hb gerechnet, da nicht alles Hämoglobin für die Sauerstoffbindung zur Verfügung steht. Bei einem arteriellen PO_2 von ~95mmHg (12.63 kPa) können nur ca. 97 % des Hämoglobins mit Sauerstoff beladen werden, weil sich immer Spuren von Methämoglobin (s.u.) und CO-Hämoglobin finden.

Da die Anlagerung von Sauerstoff an das Hämeisen ohne Änderung der Wertigkeit des Eisenatoms erfolgt, wird sie als Oxygenation, die Abgabe von Sauerstoff als Deoxygenation bezeichnet. Ist kein Sauerstoff an Hämoglobin gebunden spricht man daher von **Deoxyhemoglobin**, bei vollständiger Beladung aller Hämgruppen von **Oxyhämoglobin**.

Durch Oxidation des Hämeisens zu Fe³⁺ geht die O₂ Bindungsfähigkeit verloren, es entsteht **Methämoglobin**. Die im Erythrozyten vorhandenen Methämoglobinreduktasen sorgen dafür, dass das spontan durch Autoxidation entstehende Methämoglobin (pro Tag ca. 1 %) kontinuierlich zu Hämoglobin reduziert wird.


Die **Färbung des Blutes** wird durch die Lichtabsorption der Hämgruppe hervorgerufen. Das Porphyrinringsystem enthält zahlreiche konjugierte Doppelbindungen und die Resonanz des Systems und damit die Lichtabsorption wird durch die an das Hämeisen gebun-

denen Liganden verändert, so weisen Deoxyhämoglobin und Oxyhämoglobin deutlich unterscheidbare Spektren und entsprechend andere Färbung auf (Oxyhämoglobin hellrot, Deoxyhämoglobin dunkelrot mit starkem Blauanteil). Methämoglobin erscheint rostbraun.

Die maximale O_2 -Konzentration im Blut wird erreicht, wenn das gesamte Hb mit O_2 beladen (oxygeniert) ist. Die **Hämoglobin-Sättigung** (**S**) gibt den Anteil oxygenierten Hämoglobins [Hb_{ox}] am Gesamt-Hb, also dem oxygenierten [Hb_{ox}] + desoxygenierten [Hb_{desox}] an, wobei der Anteil des bindungsinaktiven Hb nicht berücksichtigt wird:

$$S \left[\%\right] = \frac{\left[\mathrm{Hb_{ox}}\right]}{\left[\mathrm{Hb_{ox}}\right] + \left[\mathrm{Hb_{desox}}\right]}$$

Die Hämoglobinsättigung kann mittels Pulsoximetrie gemessen werden (SpO_2) . Das Messverfahren macht sich zunutze, dass Oxyhämoglobin und Desoxyhämoglobin unterschiedliche spektrale Absorptionseigenschaften aufweisen.

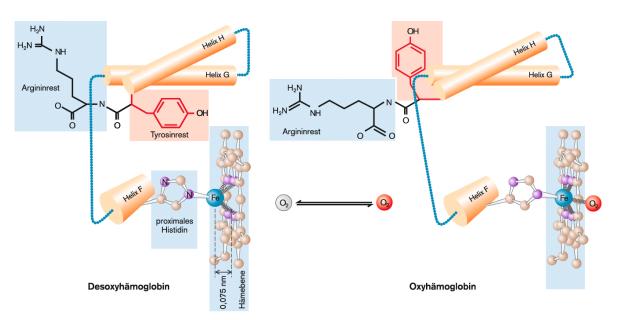
Pulsoxymeter und Absorptionspektren des oxygenierten Hämoglobins (HbO_2) und des deoxygenierten Hämoglobins. Auf der Abszisse ist die Wellenlänge aufgetragen. Quelle: Pape et al, Physiologie, Thieme-Verlag. (modifiziert)

Wird parallel die **Gewebsabsorption von zwei typischen Wellenlängen** gemessen, kann daraus der Anteil an Oxy- und Deoxyhämoglobin bzw. die momentane Sauerstoffsättigung berechnet werden. Dabei setzt sich die Gewebsabsorption aus einem konstanten Anteil, und einem durchblutungsbedingten Anteil zusammen. Erfolgt gleichzeitig mit der Absorptionsmessung eine plethysmografische Erfassung der **arteriellen Pulsation**, so ist eine Zuordnung der beobachteten Extinktionswerte zur arteriellen Durchblutung möglich (Kapillaren und Venen weisen keine Pulsation auf und werden bei der Messung daher nicht erfasst) und dadurch die Berechnung der arteriellen Sauerstoffsättigung.

Sauerstoffbindungsverhalten von Hämoglobin

Strukturelle Untersuchungen haben die Raumstruktur von Oxyhämoglobin und Deoxyhämoglobin des humanen HbA aufgeklärt und aufgrund dieser Strukturen sind Modelle entwickelt worden die das Sauerstoffbindungsverhalten des Hämoglobins erklären.

Sowohl die α -Ketten (je 141 AS) wie auch die β -Ketten (je 146 AS) bestehen zum grossen


Teil (ca. 75 %) aus α-helicalen Abschnitten. Die **Untereinheiten des Hämoglobins** sind über eine Vielzahl von Zwischenkettenkontakten (Wasserstoffbrücken, hydrophobe Wechselwirkungen, elektrostatische Bindungen) miteinander **verbunden**. Durch diese Bindungen werden letztendlich die Tertiärstruktur der einzelnen Ketten und die Quartärstruktur des Tetramers bestimmt.

Deoxyhämoglobin weist im Vergleich zum Oxyhämoglobin zusätzliche elektrostatische **Bindungen** auf ("Salzbrücken"), die wesentlich durch die positiv geladenen C-terminalen Aminosäurereste der α - und β -Ketten aufgebaut werden. Diese Bindungen sorgen für eine zusätzliche Verknüpfung der α - und β -Ketten und es ergibt sich eine relativ **starre** sog. **T-Form** (T für tense). Die Hämgruppen besitzen in dieser Konfiguration eine sehr **niedrige Sauerstoffaffinität**.

Oxyhämoglobin, dem die Salzbrücken fehlen, liegt in einer weniger starren R-Konformation (R für relaxed) vor, und in dieser Konformation besitzen die Hämgruppen eine sehr hohe Sauerstoffaffinität.

Da die Zwischenkettenkontakte nicht kovalent sind, kann es ohne grossen Energieaufwand zur Änderung der Raumstruktur kommen. So können die zunächst lokal auftretenden **Strukturänderungen**, die bei Bindung des Sauerstoffs an das Hämeisen entstehen, weitgehende Änderungen der Tertiär- und Quartärstruktur und damit Änderungen der **Substrataffinität** für Sauerstoff induzieren (s. u.).

In Deoxyhämoglobin liegt das Hämeisen nicht in der Ebene des Porphyringsystems, bei Bindung von Sauerstoff kommt es zur Lageveränderung, das Eisenatom liegt nun in der Ebene des Porphyrinrings und der zuvor durchgebogene Porphyrinring wird plan (siehe Abb. unten). Durch die Verknüpfung des Eisens mit dem proximalen Histidin wird die lokale Konformationsänderung auf die jeweilige Kette übertragen, die dadurch ausgelöste Bewegung der helicalen Abschnitte F und G führt letztlich zur Sprengung der durch die C-terminalen Abschnitte gebildeten Salzbrücken und so zum Übergang von der T-Struktur in die R-Struktur. Damit verbunden ist eine sprunghafte Zunahme der Sauerstoffaffinität des Hämoglobintetramers.

Die Sauerstoffbindung ändert die Konformation des Hämoglobins. Die Abbildung zeigt die Position der Hämgruppe relativ zu den umgebenden C-terminalen Abschnitten (Helix F, G und H) für die α -Kette von Oxy-Hb und Deoxy-Hb. Die Anlagerung von Sauerstoff führt zur Verschiebung des Eisenatoms in die Hämebene. Über das kovalent gebundene proximale Histidin kommt es in Folge zu Verlagerungen der Helices F und G mit Repositionierung des präterminalen Tyrosinrestes und des terminalen Argininrestes. Quelle: Pape et al, Physiologie, Thieme-Verlag.

Angeborene Störungen der Hämoglobinfunktion

Angeborene Störungen der Hämoglobinfunktion sind **relativ häufig**. Hierunter fallen Punktmutationen, die eine Änderung der Sauerstoffaffinität oder des Lösungsverhaltens, z.B. beim Sichelzellhämoglobin (HbS), verursachen wie auch Störungen der Globin-Kettensynthese (Thalassämien).

Punktmutationen

Bei der **Sichelzellanämie** führt eine Punktmutation – und zwar eine ($Glu \rightarrow Val$)-Substitution in der Hämoglobin- β -Kette an Position β 6 – dazu, dass ein verändertes Hb, nämlich **HbS**, ensteht. Bei Deoxygenation von HbS beobachtet man intrazellulär grosse Hämoglobinaggregate, die zu einer erheblichen **Zunahme der Viskosität** des Zytoplasmas führen und dementsprechend zu **Verformungen des Erythrozyten**. Bei homozygoten Merkmalsträgern kommt es zur **Hämolyse** mit schwerer Anämie und zur Bildung von **Mikrothromben/Thrombosen** mit entsprechend schweren Krankheitsbildern.

Bei **Punktmutationen**, die zu einer deutlichen **Erhöhung der Sauerstoffaffinität** führen, wird kompensatorisch eine **Zunahme des Hämatokrits** beobachtet.

Thalassämien

Sie sind im Mittelmeerraum relativ häufig. Bei den leichter verlaufenden β -Thalassämien ist die Synthese der β -Ketten gestört. Während der intrauterinen Entwicklung ergeben sich zunächst keine Störungen (da HbF aus α - und γ -Ketten besteht). Nach der Geburt, wenn HbF eigentlich durch HbA abgelöst werden soll, entsteht in den Erythrozyten ein Überschuss an α -Ketten. Dies führt zur Bildung von intraerythrozytären Proteinaggregaten, die eine hämolytische Anämie hervorrufen (Anämie aufgrund der Zerstörung von Erythrocyten). Sie ist jedoch bei Heterozygoten nur leicht ausgeprägt.

Da die α -Kettensysnthese von zwei Genpaaren (4 Genloci) gesteuert wird, hängt der Schweregrad der α -Thalassämie davon ab, wie viele Genloci betroffen sind. Heterozygote Merkmalsträger mit nur einem oder zwei defekten Genloci weisen keine Symptome auf, bzw. entwickeln nur eine leichte oder moderate mikrozytäre Anämie. Bei stärkeren Defekten treten Homotetramere (z. B. $\beta 4 = HbH$) auf, die aus den überschüssigen β - bzw. γ -Ketten gebildet werden. Da diese Homotetramere eine extrem hohe Sauerstoffaffinität aufweisen, sind sie für den physiologischen O_2 -Transport nicht geeignet. Sind alle **4 Genloci defekt**, kommt es daher zum **intrauterinen Tod**, da kein funktionsfähiges fetales Hämoglobin gebildet werden kann.

Hämoglobinmoleküle Spezialfälle

Erwachsene:

HbA

 α_2, β_2

HbA₀

HbA_{1C} glykiertes Hb_A (mit Glukose-Anlagerung)

-> Diabetes mellitus - Diagnostik

HbS Valin anstelle von Glutamat an Pos. 6 der β-Kette

autosomal rezessiv

-> Sichelzellanämie (hämolytische Anämie) bei Homozygoten -> Sichelzellkrise zB bei Hypoxie (auch im Flieger), Infektion

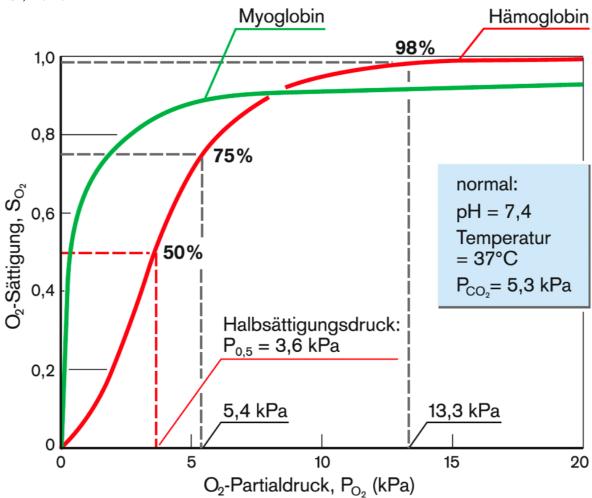
Neugeborene:

HbA

20% (mit 8-12 Monaten sind 98% α_2 , β_2 ;)

HbF 80%, α_2 , γ_2 (grössere O_2 -Affinität als HbA)

-> Neugeborenenikterus aufgrund des raschen Abbaus von HbF bei der Geburt


Spezialfälle von Hb-Molekülen

Sauerstoffbindungskurve

Hämoglobin

Bindung eines O_2 -Moleküls an die Hämgruppe führt zu einer Affinitätszunahme und damit zu einer erleichterten Bindung der folgenden O_2 Moleküle an die benachbarten Hämgruppen. Umgekehrt entsteht bei Abgabe von O_2 eine Affinitätsminderung der benachbarten Hämgruppen und damit eine Erleichterung der O_2 Abgabe. Diese Form der Wechselwirkung zwischen den benachbarten Untereinheiten wird als **positive Kooperativität** bezeichnet.

Was sich zunächst recht theoretisch anhört, hat besondere praktische Bedeutung: Setzt man Vollblut mit steigenden O_2 Partialdrucken ins Gleichgewicht, dann wird entsprechend der Bindungsaffinität das Hämoglobin sukzessiv mit Sauerstoff beladen: Es entsteht die sigmoid verlaufende Hämoglobin-Sauerstoffbindungskurve.

Sauerstoffbindungskurve des Hämoglobins und Myoglobins. Die O_2 -Bindungskurve für **Hämoglobin** verläuft **sigmoid** und der Halbsättigungsdruck beträgt 3.6 kPa (27 mmHg) bei pH 7.4, 37 °C und einem PCO_2 von 5.3 kPa (40 mmHg). Die Sauerstoffbindungskurve des monomeren **Myoglobins** ist **hyperbol**. Hämoglobin ist bei einem PO_2 von 13.3 kPa (100mmHg) im arteriellen Blut schon zu 98 % gesättigt. Quelle: Pape et al, Physiologie, Thieme Verlag.

Wie aus der S-Form der O₂-Bindungskurve (Dissoziationskurve) deutlich zu sehen ist, nimmt initial die O₂-Sättigung nur langsam zu, um dann sprunghaft anzusteigen, sodass im mittleren Teil der Bindungskurve geringe Änderungen des O₂-Drucks zu einer erheblichen Zunahme der O₂-Sättigung führen. Bei einem Sauerstoffpartialdruck von ca. 60 mmHg (7.98 kPa) ist das Hämoglobin schon zu 90% gesättigt gegenüber 98 % beim physiologischen arteriellen PO₂ von 100 mmHg (13.3 kPa). Üblicherweise liegt im arteriellem Blut die O₂-Sättigung bei 94-98 %, in venösem Blut bei etwa 75 %. Die hohe venöse O₂-Sättigung dient als Reserve für körperliche Arbeit oder pathologische Zustände, um so lange wie möglich eine adäquate Sauerstoffversorgung aufrechtzuerhalten.

Da also bei einem Absinken des arteriellen Sauerstoffdrucks auf ca. 60–65mmHg (~8 kPa) die O_2 -Sättigung den Wert von 90 % nicht unterschreitet, gibt es einen gewissen **Sicherheitsbereich** für die Sauerstoffabnahme des Blutes: Ein mässiger Abfall des inspiratorischen bzw. alveolären PO_2 , wie er etwa bei einem Höhenaufenthalt auf 1500 m auftritt, führt zu keiner signifikanten Beeinträchtigung der O_2 -Beladung und damit des O_2 -Angebots (eine Abnahme der arteriellen Sättigung um 7 % entspricht einem Verlust an O_2 von ~14 ml•l⁻¹ Blut).

Die grosse Steilheit der Bindungskurve im mittleren Bereich ist auch von Vorteil für

die Abgabe von Sauerstoff im Gewebe: Da sie mit relativ geringen Änderungen des Sauerstoffdrucks verbunden ist, bestehen auch bei stärkerer Entsättigung noch ausreichend hohe Diffusionsgradienten für den Transport von Sauerstoff aus dem Blut in das Gewebe. Bei einem PO₂ von 20 mmHg ist das Blut bereits zu ca. 65% entsättigt. Eine solch starke Entsättigung des Blutes wird z.B. in den Koronargefässen beobachtet. Da die charakteristisch sigmoide Form der Sauerstoffbindungskurve Ausdruck der positiven Kooperativität ist, wird sie nur im intakten tetrameren Hämoglobin beobachtet. Werden zum Beispiel die C-terminalen Aminosäuren entfernt (die für die Salzbrücken verantwortlich sind) dann erlischt die Kooperativität.

Als Mass für die Sauerstoffaffinität wird der sog. **Sauerstoffhalbsättigungsdruck** (\mathbf{P}_{50}) verwendet, bei diesem PO_2 ist das Hämoglobin zu 50 % mit Sauerstoff beladen. Dieser Wert liegt unter physiologischen Bedingungen (37 °C, pH 7.4, 40 mmHg PCO_2 [5.32 kPa]) bei ca. 27 mmHg (3.59 kPa). Eine **Abnahme des P_{50}** bedeutet eine **Zunahme der Sauerstoffaffinität**, die Lage der Bindungskurve ändert sich entsprechend, man findet eine **Linksverschiebung**. Bei einer **Erhöhung des P_{50}** nimmt die Sauerstoffaffinität ab, die Bindungskurve erfährt eine **Rechtsverschiebung**.

Form und Lage der Sauerstoffbindungskurve reflektieren also die Kooperativität der Sauerstoffbindung und die Sauerstoff-Affinität.

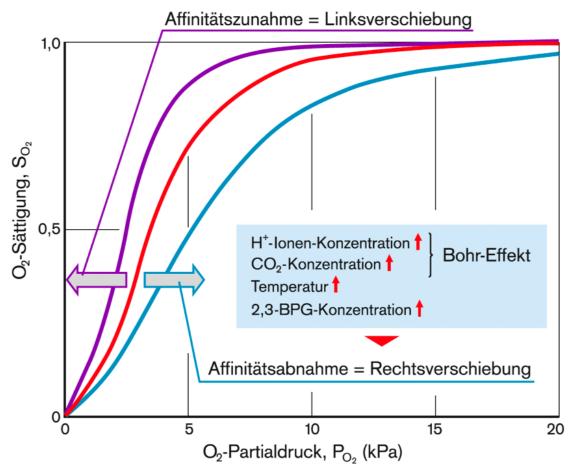
Die **Bindungsfähigkeit des Hb für O**₂ kann allerdings **aufgehoben** werden durch Kohlenmonoxid (**CO**) oder durch Oxidation (Bildung von **Met-Hb**). CO bindet etwa 300-mal stärker an Hb als O₂. Ausserdem wird durch CO die O₂-Bindungskurve nach links verschoben und damit auch die O₂-Abgabe ans Gewebe beeinträchtigt. Im Met-Hb ist Fe^{2+} zu Fe^{3+} oxidiert und kann kein O₂ mehr binden.

Myoglobin

Ein nicht kooperatives Sauerstofftransport/Bindungsprotein ist das besonders im Skelettmuskel und Herzmuskel vorkommende Myoglobin. Es ist ein **monomeres Hämprotein** (153 Aminosäuren, 17.8 kDa), das in seiner räumlichen Grundstruktur grosse Ähnlichkeit mit den Hämoglobinketten aufweist. Da es nur als Monomer vorliegt, besitzt es **keine Kooperativität** und demzufolge verläuft die Sauerstoffbindungskurve hyperbol (vgl. Abb. oben). Die Sauerstoffaffinität ist sehr hoch ($P_{50} < 5$ mmHg [0.66 kPa]). Myoglobin ist im Wesentlichen ein intrazellulärer O_2 -Speicher, der z.B. im Herzmuskel die O_2 -Versorgung während der Kammersystole stabilisiert.

Regulation der Sauerstoff-Affinität des Hämoglobins

Vier Faktoren bestimmen die Sauerstoffaffinität des Hämoglobins und damit die Lage der Sauerstoffbindungskurve unter physiologischen Bedingungen:


- der erythrozytäre Metabolit 2,3-Bisphosphoglycerat (2,3BPG)
- der pH-Wert
- der PCO₂
- die Temperatur

Veränderungen dieser Variablen führen zu einer Affinitätsänderung und somit zu einer Rechts- oder Linksverschiebung der Kurve. Die Änderung der O₂-Affinität durch pH und PCO₂ (Bohr-Effekt) beruht auf den Puffereigenschaften des Hb.

• **Rechtsverschiebung**: Hb bindet bei gleichem PO₂ weniger O₂ bzw. gibt O₂

leichter aus der Bindung frei (verminderte Affinität des Hb zu O₂)

• **Linksverschiebung**: Bei gleichem PO₂ wird mehr O₂ an Hb gebunden (erhöhte Affinität des Hb zu O₂)

Einfluss von 2,3-BPG, CO_2 , pH und Temperatur auf die Sauerstoffaffinität und die Lage der Sauerstoffbindungskurve. Eine Abnahme der O2-Affinität, die durch steigenden PCO_2 , Temperaturerhöhung, sowie Zunahme der 2,3-BPG- bzw. Protonenkonzentration erfolgt, führt zu einer Rechtsverschiebung. Entsprechend führt eine Abnahme der 2,3-BPG-Konzentration (des PCO_2 , der Temperatur und Protonenkonzentration) zu einer Linksverschiebung und damit Zunahme der Sauerstoffaffinität. Quelle: Pape et al, Physiologie, Thieme-Verlag.

2,3-Bisphosphoglycerat (2,3BPG)

Der erythrozytäre Metabolit 2,3-Bisphosphoglycerat (2,3-BPG) ist mit Abstand der wirkungsvollste Regulator der Sauerstoffaffinität: Würde unter sonst gleichbleibenden Bedingungen nur 2,3-BPG entfernt, so würde sich der P_{50} auf ca. 13–14 mmHg (1.7-1.9 kPa) reduzieren. Veränderungen der 2,3-BPG-Konzentration führen also automatisch zu Änderungen der Sauerstoffaffinität.

Das organische Anion 2,3BPG liegt im Erythrozyten in einer Konzentration von ca. 5 $\text{mmol} \cdot l^{-1}$ vor (d.h. in gleich hoher Konzentration wie das Hämoglobin) und bindet bevorzugt an Deoxyhämoglobin (im stöchiometrischen Verhältnis 1:1). Die Bindung des mit negativen Ladungen versehenen 2,3BPG erfolgt elektrostatisch an positiv geladene Bindungsstellen der Hämoglobin- β -Ketten, die in Deoxyhämoglobin über eine Öffnung am N-terminalen Ende zugänglich werden. Beim Übergang vom T- in den R-Zustand, d. h. bei Bindung von Sauerstoff, verkleinert sich dieser Hohlraum und 2,3BPG kann nicht gebunden werden. Durch die **Stabilisierung des Deoxyzustands durch 2,3BPG** nimmt die O_2 -Affinität des Hämoglobins ab (Abb. oben).

2,3BPG ist ein Metabolit der Glykolyse. Entscheidend für seine intraerythrozytäre

Konzentration ist daher die **Glykolyserate**: Alle Bedingungen, die den glykolytischen Durchsatz erhöhen, steigern die 2,3BPG-Konzentration. Da das Schlüsselenzym der Glykolyse, die Phosphofructokinase, seine maximale Aktivität bei alkalischem pH erreicht, führt eine **Zunahme** des intraerythrozytären **pH** (z.B. bei respiratorischer Alkalose) generell zu einer **Erhöhung der 2,3BPG-Konzentration**.

Eine Abnahme der 2,3BPG-Konzentration tritt unter anderem während der **Lagerung von Blutkonserven** in saurem ACD-(acid-citrate-dextrose-)Medium auf, sodass der P_{50} der Blutkonserve nach längerer Lagerung deutlich erniedrigt ist. Nach Transfusion kommt es innerhalb eines Tages zur Normalisierung der 2,3BPG-Konzentration und damit auch der Sauerstoffaffinität.

Auch der Oxygenationsgrad des Hämoglobins nimmt Einfluss auf die Glykolyserate: In oxygenierten Erythrozyten ist die Glykolyserate tiefer als in deoxygenierten Erythrozyten, da verschiedene glykolytische Enzyme, darunter die Phosphofructokinase, an die zytoplasmatische Domäne des Anionentransporters Bande-3-Protein gebunden werden.

Deoxyhämoglobin kann allerdings auch zur Erhöhung der Glykolyserate und 2,3BPG-Synthese beitragen, da es ebenfalls an Bande-3 assoziieren kann, wobei es zur Freisetzung und damit Aktivitätszunahme speziell der Phosphofruktokinase kommt.

Alle Ursachen, die zu einem **erhöhten Anteil an Deoxy-Hb** führen (Anämie/Hypoxie etc.) bewirken somit eine **Zunahme der 2,3BPG-Synthese** und damit verbunden eine **Rechtsverschiebung** der Sauerstoffbindungskurve.

pH-Wert (Bohr-Effekt)

Wie bereits erläutert, sind elektrostatische Bindungen wichtig für die Stabilität des Deoxyzustands von HbA. Die daran beteiligten α -Aminogruppen und Imidazolreste haben teilweise pK-Werte, die im physiologischen pH-Bereich liegen. **Zunahme der Protonenkonzentration stabilisiert** daher die positive Ladung dieser Gruppen und damit die **Salzbrücken**. Bei Oxygenation werden diese Salzbrücken gesprengt und es kommt zu einer Freisetzung von Protonen, da der pK einiger beteiligter Gruppen sinkt. In der Summe führt also eine **pH-Erniedrigung** zu einer **Stabilisierung des Deoxyzustandes** und damit einer **Abnahme der Sauerstoffaffinität**. Die pH-Abhängigkeit des Sauerstoffbindungsverhaltens wird nach dem Entdecker Christian Bohr als Bohr-Effekt bezeichnet.

Da es unter Ruhebedingungen nur zu geringen pH-Veränderungen während der Passage des Blutes durch das Gewebe kommt (im gemischt-venösen Blut liegt der pH unter Ruhebedingungen bei ca 7,37), hat der Bohr-Effekt hier nur eine geringe Bedeutung. Intensive körperliche Belastung oberhalb der Dauerleistungsgrenze erzeugt jedoch eine **metabolische Azidose**. Unter diesen Bedingungen führt der Bohr-Effekt zu einer deutlichen **Verbesserung der Sauerstoffabgabe** im arbeitenden Muskel.

Durch den **Bohr-Effekt** ändert sich jedoch nicht nur die Sauerstoffaffinität sondern es kommt auch zu **Veränderungen der Pufferkapazität** des Hämoglobins. Bei Deoxygenation erfolgt eine Aufnahme von Protonen, infolgedessen ist die Pufferkapazität von Deoxyhämoglobin grösser als die des Oxyhämoglobins.

$$HbH^+ + O_2 \rightleftharpoons HbO_2 + H^+$$

Quantitativ kommt es durch den Bohr-Effekt unter physiologischen Bedingungen zur Bindung/Freisetzung von ca. 0.3–0.4 Mol H⁺ pro Mol Sauerstoff. Dieser Effekt ist von erheblicher **Bedeutung für den CO₂-Transport**.

PCO₂

Der Einfluss von Kohlendioxid (CO₂) auf die Sauerstoffaffinität hat zwei Komponenten, zum einen wirkt der durch Anstieg des PCO₂ induzierte Abfall des pH (Bohr-Effekt) eine Reduktion der Sauerstoffaffinität, zum zweiten wird CO₂ direkt an die freien α-Aminogruppen der N-terminalen Aminosäuren des Hämoglobins als sog. Carbamat gebunden. Diese Bindung erfolgt primär an Deoxyhemoglobin und bewirkt daher eine zusätzliche Abnahme der Sauerstoffaffinität. Da jedoch bei Anwesenheit von 2,3BPG die Carbamatbindung reduziert wird, spielt die Carbamatbildung für die Steuerung der O₂-Affinität nur eine relativ geringe Rolle.

Temperatur

Die **Sauerstoffaffinität nimmt mit steigender Temperatur ab**. Da bei schwerer körperlicher Arbeit die Temperatur im arbeitenden Muskel auf über 40 °C ansteigen kann, begünstigt dieser Effekt die Sauerstoffabgabe. Da gleichzeitig der pH sinkt, kann es im arbeitenden Muskel zu einer fast maximalen Entsättigung des Blutes kommen (d. h. zu einer Ausschöpfung des O₂-Angebots von ca. 85 %).

Störungen des Sauerstofftransports

Störungen des O₂-Transports zu den O₂-verbrauchenden Geweben können zu einer **Gewebshypoxie** führen. Eine kritische Minderversorgung der Gewebe tritt ein, wenn der PO₂ in den Mitochondrien Werte von 0.1-1 mmHg (13-133 Pa) unterschreitet. Transportstörungen können alle Transportschritte betreffen. Man unterteilt den Sauerstoffmangel (Hypoxie) folgendermassen:

- hypoxämische Hypoxie: verminderter arterieller PO₂.
 Ursachen: z.B. Ventilationsstörungen, alveoläre Diffusionsstörungen, verminderter atmosphärischer PO₂, neuronale Störungen der Atmung; avDO₂ (arterio-venöse O₂-Differenz) normal.
- **diffusionsbedingte Hypoxie**: zu grosse Diffusionswege. *Ursachen*: Gewebszunahme (Hypertrophie, z.B. am Herzen), verminderte Kapillarisierung (z. B. Kapillarverschluss).
- anämische Hypoxie: verminderte O₂-Transportkapazität. *Ursachen*: Mangel an bindungsfähigem Hb (z.B. Mangel oder Fehlbildungen von Hb, bindungsinaktives Hb), resp. an Erythrocyten; avDO₂ normal.
- **ischämische Hypoxie**: verminderte Durchblutung. *Ursachen*: Gefässveränderungen (z.B. Atherosklerose), reduziertes Herzminutenvolumen (z. B. Herzinsuffizienz); avDO₂ erhöht.

in brie

- Die **O₂-Transportkapazität** des arteriellen Blutes (bei PO₂ 95 mmHg) beträgt im Normalfall ca. 200 ml O₂•l⁻¹ Blut, wobei O₂ v.a. an Hämoglobin gebunden ist (1.34 ml O₂ g⁻¹ Hb; ca. 150 g•l⁻¹ Plasma), da die O₂-Löslichkeit gering ist (3 ml O₂ l⁻¹ Plasma).
- Ein Hämoglobin-Tetramer (HbA: α₂β₂) kann total 4 O₂ binden (1 O₂ pro Fe²⁺ im Häm), wobei eine O₂-Bindung zu einer Konformationsänderung führt, was die Sauerstoffaffinität für die weiteren O₂ erhöht (positive Kooperativität);

Deoxyhämoglobin: niedrige Affinität, T-Struktur, dunkelrot. **Oxyhämoglobin**: hohe Affinität, R-Struktur, hellrot) und zur typischen, S-förmigen O₂-Bindungskurve (O₂-Sättigung, SO₂, in Abhängigkeit des PO₂) führt. Das **Myoglobin-Monomer** hat keine Kooperativität und eine hohe O₂-Affinität (O₂-Speicher).

- Die **Bindungsfähigkeit** von Hb für O₂ wird aufgehoben bei Bildung von **Methämoglobin (Met-Hb:** Hämoglobin mit oxidiertem Eisen, Fe³⁺; entsteht u.a. spontan) und bei Bindung von **Kohlenmonoxid (CO-Hb**, da CO 300-mal besser bindet als O₂).
- Angeborene Störungen der Hämoglobinfunktion (Sichelzellanämie, Thalassämie) können zu Viskositätsänderungen, Thromben und/oder Hämolyse führen.
- Die **O**₂-**Bindungskurve** wird **nach rechts verschoben** durch Anstieg von 2,3BPG, H⁺, PCO₂ und Temperatur (reduzierte O₂-Affinität: schlechtere O₂-Aufnahme, bessere O₂-Abgabe, P₅₀ erhöht), und **nach links verschoben** durch Abfall von 2,3BPG, H⁺, PCO₂ und Temperatur (erhöhte O₂-Affinität, P₅₀ erniedrigt).
- Ein Mass für die Sauerstoffaffinität von Hämoglobin ist der **Sauerstoffhalbsättigungsdruck** (P₅₀).
- **Bohr-Effekt**: pH-Erniedrigung (H⁺-Erhöhung) oder PCO₂-Erhöhung reduzieren die Sauerstoffaffinität von Hb und verändern die Pufferkapazität (Deoxyhämoglobin hat eine grössere Pufferkapazität).
- **CO₂-Bindung an Hb** als Carbamat reduziert die Sauerstoffaffinität ebenfalls in geringem Masse.
- Pathophysiologisch unterscheidet man hypoxämische Hypoxie (P_aO₂ reduziert), diffusionsbedingte Hypoxie (erhöhte Diffusionsstrecken), anämische Hypoxie (O₂-Transportkapazität reduziert) und ischämische Hypoxie (Durchblutung reduziert), welche zu Gewebehypoxie führen können.
- **Diagnostisch** wird die Sauerstoffsättigung mittels Pulsoxymeter (SpO₂) oder Blutgasanalyse (S_aO₂), PO₂ im arteriellen Blut mittels Blutgasanalyse (P_aO₂) bestimmt.

Kohlendioxidtransport im Blut

Transportformen des Kohlendioxids

Im aeroben Stoffwechsel wird kontinuierlich CO_2 produziert, welches aus dem Gewebe zur Lunge transportiert wird, um dort an die Umgebung abgeben zu werden. So fallen bei einem Ruhesauerstoffverbrauch von ca. 300 ml • min⁻¹ und einem durchschnittlichen RQ (dem zellulären respiratorischen Quotienten) von ca. 0.83 insgesamt ca. 240 ml CO_2 pro Minute im menschlichen Körper an. Das durch das Gewebe strömende Blut nimmt bei einem Herzminutenvolumen (Q) von 6 l•min⁻¹ 1.9 mMol•l⁻¹ (~42 ml• l⁻¹ Blut) an im Gewebe entstandenem CO_2 auf.

Grundsätzlich wird CO₂ in drei Formen im Blut transportiert:

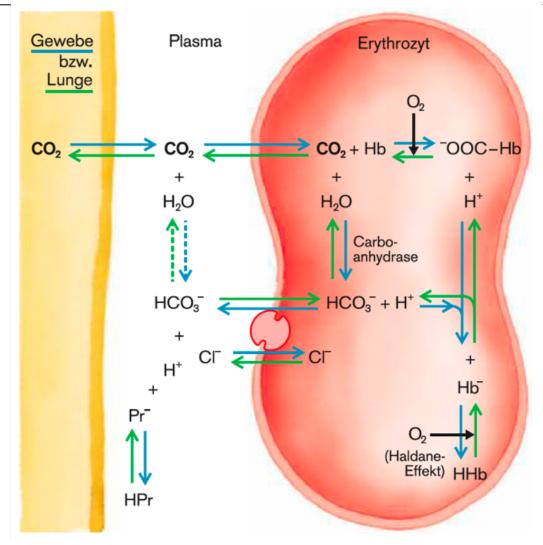
• physikalisch gelöst

- als Bicarbonat
- als Carbamat

Physikalisch gelöstes CO₂

Multipliziert man einen arteriellen PCO₂ (also P_aCO₂) von 40 mmHg (5.32 kPa) mit dem Löslichkeitskoeffizienten (Löslichkeit: 0.0307 mM•mmHg⁻¹, 37 °C, Plasma), so erhält man die **Konzentration des im Plasma physikalisch gelösten CO₂**, nämlich ca. 27.2 ml • l⁻¹ (1.2 mmol• l⁻¹). Das sind ca. **5% des Gesamtgehalts an CO₂ im Blut**. Bei einem PCO₂ von 46mmHg im gemischt-venösen Blut (PvCO₂) resultieren entsprechend 31.28 ml• l⁻¹ (1.38 mmol• l⁻¹). Die arterio-venöse Differenz an physikalisch gelöstem CO₂ in der Lunge beträgt somit ca. 4 ml• l⁻¹ (0.18 mmol• l⁻¹). Insgesamt liegt der Beitrag des physikalisch gelösten CO₂ am CO₂-Austausch bei ca. 10 %.

Bildung von Bicarbonat


Durch Hydratation des CO₂ entsteht Kohlensäure, die zu Bicarbonat und Protonen zerfällt:

$$CO_2 + H_2O \leftrightarrow (H_2CO_3) \leftrightarrow H^+ + HCO_3^-$$

Diese spontane Reaktion verläuft normalerweise recht langsam und wird unter physiologischen Bedingungen erst durch eine **durch Carboanhydrase vermittelte Katalyse** effektiv. Da Kohlensäure bei physiologischem pH vollständig dissoziiert ist, fallen bei der Neubildung von Bicarbonat jeweils äquivalente Mengen an Protonen an, die durch Nichtbicarbonatpuffer gebunden werden müssen, da es andernfalls zu erheblichen pH-Schwankungen kommt. Im Blutplasma ist die Bildung von Bikarbonat kaum möglich, da die Pufferkapazität der Plasmaproteine gering ist und die Carboanhydraseaktivität ebenfalls gering ist. Die Überführung von CO_2 in Bicarbonat bei der Passage des Blutes durch das Gewebe findet daher **fast ausschliesslich in den Erythrozyten** statt. Dazu verfügen sie über das Enzym Carboanhydrase II, das eine rasche Umwandlung von CO_2 zu Bicarbonat erlaubt. Da Hämoglobin eine grosse Anzahl von Histidinen mit puffernden Imidazolgruppen besitzt, deren pK im physiologischen Bereich liegt, ist die **Pufferkapazität des Hämoglobins in den Erythozyten** ca. 8-mal grösser als die des Plasmas!

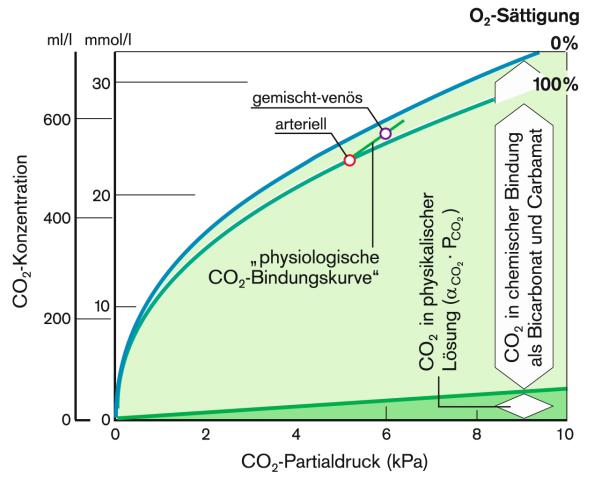
Hinzu kommt, dass Hämoglobin im Gewebe Sauerstoff abgibt, was zu einer zusätzlichen Protonenaufnahme führt (s. Bohr-Effekt). Dies bedeutet, dass die Bicarbonatbildung insgesamt nur mit geringen pH-Veränderungen abläuft, weil die bei der Bildung von HCO_3 anfallenden Protonen zum grossen Teil vom Hämoglobin abgepuffert werden.

Durch die Anwesenheit der Carboanhydrase II in den Erythrozyten wird bei der Gewebspassage die Bildung von HCO₃ stark beschleunigt. Da **im Erythrozyten ständig CO**₂ **in Bicarbonat umgewandelt** wird, findet ein kontinuierlicher Einstrom von CO₂ aus dem Plasma in die Erythrozyten statt. Durch die Neubildung von HCO₃ im Erythrozyten entsteht ein nach aussen gerichtetes Konzentrationsgefälle für HCO₃ zwischen Erythrozyt und Plasma. Über den Anionentransporter (Bande-3-Protein) gelangt das neugebildete HCO₃ in das Plasma. Da im Gegenzug Chlorid über den Anionentransporter in den Erythrozyten einströmt ist der Transport elektroneutral (Chloridshift oder Hamburger-Shift). Durch die Aufnahme von Chlorid erhöht sich aber der Gesamtbestand an Osmolyten im Erythrozyten und der Erythrozyt nimmt entsprechend an Volumen zu.

Funktion der Erythrozyten bei der CO_2 -Aufnahme im Gewebe (blaue Pfeile) und der CO_2 -Abgabe in der Lunge (grüne Pfeile). Die durch gestrichelte Pfeile gekennzeichneten Reaktionen im Plasma verlaufen langsam. Quelle: Pape et al, Physiologie, Thieme-Verlag.

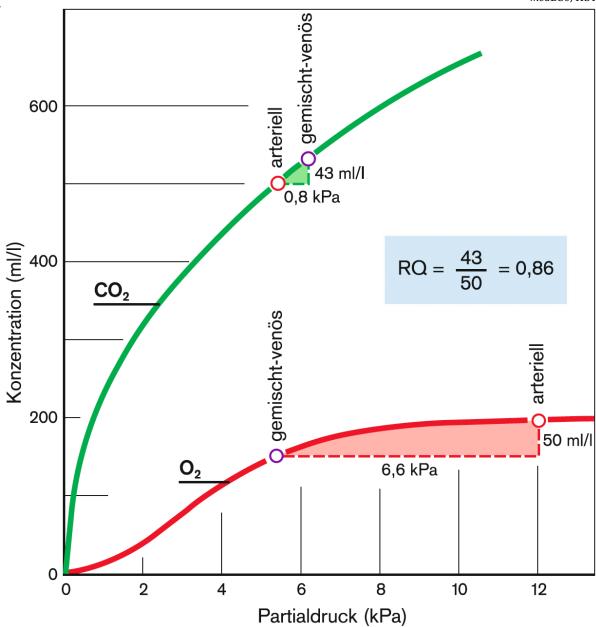
In der Lunge verläuft der Prozess in umgekehrter Richtung: Bicarbonat strömt im Austausch gegen Chlorid in den Erythrozyten und wird dort durch die Carboanhydrase II in CO_2 und H_2O umgewandelt. Die für die Reaktion benötigten Protonen werden zum grossen Teil durch die Oxygenation des Hämoglobins geliefert. Netto verliert der Erythrozyt Osmolyt und Wasser, sein Volumen verringert sich (Hamburger-Shift).

Transport von CO₂ als Carbamat


 CO_2 wird auch direkt an Hämoglobin (und in geringem Ausmass an Plasmaproteine) gebunden, und zwar an freie α -Aminogruppen der N-terminalen Aminosäuren (R-kennzeichnet den Aminosäurerest):

$$R-NH_2 + CO_2 \leftrightarrow RNHCOO^- + H^+$$

Die Anlagerung von CO_2 als Carbamat erfolgt bevorzugt an die freien N-terminalen α -Aminogruppen des Deoxyhämoglobins. Diese sog. Carbamatreaktion ist oxylabil, das heisst bei Oxygenierung des Hämoglobins in der Lunge wird CO_2 wieder freigesetzt, umgekehrt wird durch die verstärkte Carbamatbildung bei Deoxygenation im Gewebe zusätzlich die Sauerstoffaffinität gesenkt, und dadurch die O_2 -Abgabe im Gewebe gefördert.


CO₂-Bindungskurve

Die CO_2 -Bindungskurve beschreibt die Änderung des Gesamtgehalts an CO_2 (physikalisch gelöst, Bicarbonat, Carbamat) in Abhängigkeit des PCO_2 .

Die CO_2 -Bindungskurve des menschlichen Bluts. CO_2 wird im Blut physikalisch gelöst, als Bicarbonat und an Hämoglobin gebunden (Carbamat) transportiert. Deoxyhämoglobin bildet mehr Carbamat und wegen des Haldaneeffektes wird in deoxygeniertem Blut auch mehr Bicarbonat gebildet. Daher liegt die CO_2 -Bindungskurve für deoxygeniertes Blut über der des oxygenierten Blutes. Eingezeichnet sind auch die tatsächlichen Werte des CO_2 -Gehaltes im arteriellen bzw. gemischtvenösen Blut ("physiologische" CO_2 -Bindungskurve).

Da die HCO₃-Produktion nicht limitiert ist, gibt es **keine Sättigung für den CO₂-Transport** und sie verläuft im physiologischen Bereich nahezu linear. Allerdings ist der maximal erreichbare PCO₂ eines Menschen begrenzt, da CO₂ oberhalb eines kritischen PCO₂ (ca. 70 mmHg) zentral atmungsdepressiv wirkt. **Desoxygeniertes Hb bindet mehr CO₂ als oxygeniertes Hb (Haldane-Effekt**), da im deoxygenierten Blut wegen des Bohr-Effektes (verstärkte Protonenbindung des Hämoglobins) mehr CO₂ in Form von Bicarbonat gebunden werden kann und Deoxy-Hb mehr Carbamat bindet. Daher liegt die CO₂-Bindungskurve für deoxygeniertes Blut oberhalb der Kurve für oxygeniertes Blut. Die Gesamtmenge an CO₂ im arteriellen Blut ist unter physiologischen Bedingungen mehr als doppelt so gross wie die des Sauerstoffs (Abb. unten).

Vergleich der O_2 - und CO_2 -Bindungskurven des menschlichen Blutes. Dargestellt ist die Gesamtkonzentration an CO_2 bzw O_2 im arteriellen Blut in Abhängigkeit vom Partialdruck, sowie die jeweiligen arterio-venösen Konzentrationsdifferenzen (im gemischt-venösen Blut ist der Gesamtdruck aller Gase subatmosphärisch, da einem Abfall des PO_2 um 8 kPa (60 mmHg) (zwischen Arterie und A. pulmonalis) nur ein Anstieg des PCO_2 um 0.8 kPa (6 mmHg) gegenübersteht; daher können z.B. beim Pneumothorax Gase aus der Pleurahöhle in das Blut resorbiert werden).

Unter den im arteriellen Blut vorliegenden Bedingungen (PCO_2 40mmHg [5.32 kPa], pH 7.4) findet man CO_2 zu 5 % physikalisch gelöst, ca. 7 % als Carbamat und 88 % als Bicarbonat. Im arteriellen Blut werden insgesamt ca. 500 ml CO_2 pro Liter Blut transportiert.

Bei der Aufnahme des anfallenden CO_2 im Gewebe (insgesamt ~1.9 mM•l¹¹ unter Ruhebedingungen, s.o.) werden 79 % in Bicarbonat überführt und der Rest zu ungefähr gleichen Teilen als Carbamat bzw. physikalisch gelöstes CO_2 aufgenommen; dem Haldane-Effekt, der aus der Sauerstoffabgabe des Hämoglobins resultiert, ist dabei ca. 35–40 % der CO_2 -Aufnahme im Gewebe zuzuschreiben.

Aufgrund der hohen HCO₃-Konzentration und der Möglichkeit, den PCO₂ über die Atmung zu regulieren (willkürliche Mehrventilation resultiert in vermehrter CO₂-Abgabe),

bilden HCO₃ und CO₂ das wichtigste Puffersystem im Blut.

Eine **Hyperventilation** (Ventilation wesentlich grösser als für einen physiologischen Gasaustausch notwendig) führt zur übermässigen CO_2 -Abgabe in der Lunge und **Hypokapnie** (Absinken des $P_aCO_2 < 35$ mmHg). Eine **Hypoventilation** (und/oder ein stark gestörter Gasaustausch aus anderen Gründen) führt zur **Hyperkapnie** ($P_aCO_2 > 45$ mmHg).

Klinisch spricht man von **Globalinsuffizienz**, wenn nebst einem reduzierten P_aO_2 auch ein erhöhter P_aCO_2 vorhanden ist (bei Partialinsuffizienz ist nur P_aO_2 erniedrigt).

Zusätzlich zur **Blutgasanalyse-Bestimmung des P**_a**CO**₂ wird häufig auch die **Kapnometrie** (laufende PCO₂- oder auch FCO₂ -Messung im Atemgas) und Kapnographie (Darstellung der CO₂-Kurve auf einem Monitor oder Aufzeichnungsgerät, Kapnogramm) angewendet, um eine Normokapnie oder Abweichung davon zu messen. In diesem Falle wird der/die end-exspiratorische CO₂-Partialdruck / Fraktion als Mass für den alveolären PCO₂ und aufgrund des Diffusionsgleichgewichtes, den P_aCO₂ genommen. Speziell Monitoren im Ambulanzfahrzeug und Rettungshelikopter, resp. auf der Intensivstation bedienen sich dieser Methodik.

in brief

- Der CO₂-Transport erfolgt in drei Formen: Physikalisch gelöst im Plasma (ca. 5%), als Bikarbonat (HCO₃⁻) im Plasma (ca. 88%; Carboanhydrasevermittelte Katalyse im Ec) und als Carbamat (ca. 7%; CO₂ an Hb gebunden; oxylabil: bei Oxygenierung in Lunge wird CO₂ freigesetzt; Carbamatbildung bei Deoxygenation in Gewebe grösser → senkt O₂-Affinität)
- Die **Pufferkapazität** des Hb innerhalb der Erythrocyten ist 8-mal grösser als diejenige im Plasma.
- Chloridshift (Hamburgershift): Austausch von HCO₃ aus Ec ins Plasma und Cl von Plasma in Ec mit Zunahme des Ec-Volumens (infolge Osmolytanstieg).
- Haldane-Effekt: Deoxygeniertes Blut bindet mehr CO₂ als oxygeniertes Blut (mehr H⁺-Bindung an Deoxy-Hb → mehr HCO₃⁻, und bessere Carbamat-Bindung)
- Die CO₂-Konzentration im physiologischen Bereich ist > 2-mal grösser als die O₂-Konzentration im Blut
- HCO₃ und CO₂ bilden das wichtigste Puffersystem im Blut
- **Pathophysiologisch** können bei Hyperventilation eine **Hypokapnie** (P_aCO₂ < 35 mmHg), bei Hypoventilation (o.a.) eine **Hyperkapnie** (P_aCO₂ > 45 mmHg) eintreten. Bei gleichzeitiger Erniedrigung des P_aO₂ und Erhöhung des P_aCO₂ spricht man von einer **Globalinsuffizienz**.
- **Diagnostisch** wird der P_aCO₂ mittels Blutgasanalyse bestimmt, kann aber mittels Kapnometrie (beim Lungengesunden) abgeschätzt werden.

Study Questions

- Kann die O_2 -Transportkapazität einer gesunden Person auf Meereshöhe erhöht werden, wenn diese 100% O_2 anstelle von normaler Luft atmet? Wenn ja, über welche Mechanismen?
- Weshalb zeigt ein Pulsoxymeter nur eine O₂-Sättigung an, wenn es auch den Puls (die Herzfrequenz) anzeigt?
- Aufgrund welcher Mechanismen könnte sich die Sauerstoffaffinität bei einer Person verändern, die innert weniger Stunden auf 3500 m ü.M. fährt mit der Bahn und anschliessend in der Kälte draussen die Aussicht geniesst? Wie könnte der CO₂-Transport unter diesen Bedingungen verändert werden?
- Aufgrund welcher Mechanismen könnte sich die Sauerstoffaffinität bei einem 1500m-Läufer verändern gegen Ende des Laufes?
- Wie erklärt sich, dass die O₂-Bindungskurve des Hämoglobins S-förmig ist, die O₂-Bindungskurve des Myoglobins und die CO₂-Bindungskurve jedoch nicht?
- Nennen Sie 4 mechanistisch unterschiedlichen Ursachen und Beispiele für einen gestörten O₂-Transport.
- Weshalb kann der P_aCO₂ nicht unbeschränkt ansteigen im lebenden Menschen, obwohl das Blut fast beliebig viel CO₂ aufnehmen könnte? Wie könnte sich subjektiv eine akute Hyperkapnie bemerkbar machen?

Zum Kapitel Atmungs-System und integrative Aspekte des Herz-Kreislauf- und Atmungs-Systems – Antworten zu Study Questions