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Bone has a remarkable ability to adjust its mass and architecture in response toAbstract
a wide range of loads, from low-level gravitational forces to high-level impacts. A
variety of types and magnitudes of mechanical stimuli have been shown to
influence human bone cell metabolism in vitro, including fluid shear, tensile and
compressive strain, altered gravity and vibration. Therefore, the current article
aims to synthesize in vitro data regarding the cellular mechanisms underlying the
response of human bone cells to mechanical loading. Current data demonstrate
commonalities in response to different types of mechanical stimuli on the one
hand, along with differential activation of intracellular signalling on the other. A
major unanswered question is, how do bone cells sense and distinguish between
different types of load? The studies included in the present article suggest that the
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type and magnitude of loading may be discriminated by overlapping mechanosen-
sory mechanisms including (i) ion channels; (ii) integrins; (iii) G-proteins; and
(iv) the cytoskeleton. The downstream signalling pathways identified to date
appear to overlap with known growth factor and hormone signals, providing a
mechanism of interaction between systemic influences and the local mechanical
environment. Finally, the data suggest that exercise should emphasize the amount
of load rather than the number of repetitions.

The adaptability of human bone to different load enced by systemic factors (cytokines and growth
levels is both a blessing and a curse. Following factors, metabolites, endocrine and neuroendocrine
appropriate exercise, an improvement in bone densi- signals), but is mainly determined by the mechanical
ty can be tracked in vivo, as can the decline follow- load history.[4] Although powerful, an inherent limi-
ing its cessation.[1] The downside of this economical tation of the theory is that the actual cellular mech-
approach to bone is that prolonged unloading anisms of load sensing and its systemic integration
(during times of illness, immobilization or exposure by networks of interacting cell types are not de-
to microgravity) leads to an over exuberant resorp- tailed.
tion of bone and a high risk of fracture.[2] With the recent explosion of knowledge about

cell signalling in the fields of cancer and immuno-Early theories to explain the dynamic relation-
logical research, many signalling pathways haveship between the structure of bone (form) and its
been examined in the context of mechanotransduc-mechanical environment (function) invoked notions
tion experiments. Experiments using in vitroof a piezoelectric effect within the mineralized ma-
mechanical stimulation of widely differing para-trix under loading.[3] More current research supports
meters have generated some controversy with re-a four-stage cell-mediated theory of mechanotrans-
spect to the types and magnitudes of load to whichduction:
different bone cell types actually respond. Indeed,1. Mechanocoupling: the conversion of physiologi-
mounting data from various connective tissue cellcal loads applied to tissues into local mechanical
types indicates that in vitro and in vivo responsessignals experienced by bone cells.
may be divergent with respect to the influence of2. Biochemical coupling: the process whereby cells
loading on matrix remodelling (see discussion insense a load using mechanoresponsive structures
Tasevski et al.[5]). An additional variable is that boneand transform it into a biochemical response.
cells derived from non-human species differ from3. Signal transmission: the resultant downstream
primary human osteoblasts in key elements of thesignalling within and between cells.
biochemical coupling and signal transduction ma-4. Effector response of osteoblasts and osteoclasts:
chinery.[6-8] Therefore, the purpose of this compre-the cellular outcomes that lead to build-up, remodel-
hensive review is to synthesize, for the first time, theling or resorption of bone matrix.
in vitro data regarding mechanotransduction inThe mechanostat theory developed by Harold
human bone cells.Frost hypothesized that “bone’s biologic machinery

would make healthy postnatal human load-bearing 1. Methods
bones and their trabeculae strong enough to keep

MEDLINE was searched (from 1966 to Junetypical peak voluntary mechanical loads from
2006) using the following systematic search terms:breaking them suddenly or in fatigue”.[4] According
(‘mechanotransduction’, ‘mechanoreceptors’, ‘me-to this hypothesis, bone mass is adjusted when the
chanical stress’) combined with (‘bone’, ‘osteo-typical loads (resulting in particular tissue strain
cyte’, ‘osteoblast’, ‘osteocyte’). The abstracts ofvalues) diverge from a physiological ‘set-point’ (ap-
studies resulting from this search were examinedproximately 1000–1500 microstrain or 1–1.5%)
according to the following criteria.much like a thermostat. The theory predicts that the

balance of bone formation in healthy adults is influ- Inclusion criteria:

© 2008 Adis Data Information BV. All rights reserved. Sports Med 2008; 38 (2)
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• involved the direct application or manipulation of and mineralization of the extracellular matrix (see
mechanical stimulus to human bone cells; table I).

• primarily addressed cell signalling pathways ac-
tivated by mechanical loading. 3. Mechanocoupling
Exclusion criteria:

• related to particular tissues or materials relevant
The studies applied mechanical stimulation di-to specialized disciplines (e.g. periodontal liga-

rectly to bone cells using a wide variety of models,ment, experimental biomaterials);
which are grouped into six categories according to• review article;
experimental protocol (table I). The types of stimuli

• animal studies. included fluid flow, substrate strain, membrane def-
The following information was extracted from ormation or integrin stimulation, vibration, altered

each study: cell type; experimental loading proce- gravity, and compressive loading (increased hydro-
dure; loading parameters including intensity, fre- static pressure). In the studies reviewed, each of
quency and duration; and objective outcomes. This these different types of mechanical stimuli was able
information was tabulated according to the type of

to induce osteogenic activity through similar path-
loading protocol used. Studies that used more than

ways (see section 4), reinforcing the notion of a
one type of loading protocol were included. The

common system, which can respond to a broadresults of studies were elaborated and are summa-
range of mechanical stimuli (figure 1).rized according to the four stages of mechanotrans-

In contrast to the conclusions of a recent re-duction: (i) mechanocoupling; (ii) biochemical
view,[76] there was ample evidence that osteoblastscoupling; (iii) signal transmission; and (iv) effector
respond to levels of fluid flow and substrate strain,response.
which are within the range of what may be consid-
ered physiological.[4] Addressing the question of

2. Results which type of these two types of loading is most
osteogenic, You et al.[30] found that both cyclic

Seventy-two studies were identified that aimed to strain and fluid flow could induce calcium transients
determine the function and involvement of mecha- in osteoblasts, but fluid flow was 5-fold more likely
notransduction pathways and responses in human to induce calcium transients than a substrate strain at
bone cells in vitro and met the criteria for review. presumed physiological levels. Fluid flow also had a
All of the studies were conducted with cultured greater effect on osteopontin expression than sub-
human osteoblasts or osteoblast-like cells or cell strate strains.
lines, including primary cells (derived from bone
explants), bone-marrow-derived osteoblasts, or im-

4. Biochemical Couplingmortalized cell lines (MG-63, TE-85, G292, SaOS-2
and HOBIT [human osteoblast-like cell line]). Only

How are physical loads integrated into cellularone study involved the application of load to other
responses as diverse as the decision to modulate thehuman bone cell types (osteoblasts and osteo-
constitution and architecture of extracellular matrix,clasts).[9]

to differentiate, proliferate or undergo apoptosis?The human bone cells in the reviewed studies
The present systematic review found that in osteo-varied by age, gender, presence of pathology, meno-
blasts, signalling is transduced into a biochemicalpausal status, biopsy location and depth, differentia-
response by at least four independent and interactingtion status, and length of time in culture (including
mechanisms including integrins, G-proteins, theboth primary and immortalized cells). Despite this
cytoskeleton and ion channels. These initial triggersvariation, the studies were essentially consistent in
activate or modulate enzymes that influence nucleardemonstrating that mechanical strain, vibration or
transcription, which in turn promote a variety offluid flow can induce an adaptive response in osteo-

blasts represented by proliferation, and secretion responses.

© 2008 Adis Data Information BV. All rights reserved. Sports Med 2008; 38 (2)
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4.1 Ion Channels

The earliest data on biomechanical coupling in
human bone cells came from membrane stretch
studies by Davidson et al.,[61,62] demonstrating the
existence of several classes of ion channels in MG63
osteoblast-like cells. The principal stretch-activated
channel was a potassium channel whose probability
of being open was proportional to the degree of
membrane stretch applied. Whether this channel
was activated during physiological types of loading
has never been reported; the membrane stretches
that were applied were likely to have been
supraphysiological, and may be more relevant to
studies of osmoregulation rather than physiological
loading.

Subsequent data on load-sensing mechanisms
came from experiments conducted by McDonald
and co-workers[21] using the U2/OS osteoblast cell
line. In flow-stimulated cells, a rapid increase in
intracellular calcium levels [Ca2+]i, resulted from
the influx of extracellular calcium. This was fol-
lowed by a mobilization of intracellular calcium,
which was independent of potassium currents. There
was a measurable delay in the elevation in [Ca2+]i,
which, additionally, was abolished by a Gi-/Go pro-
tein inhibitor (PTX). Therefore, McDonald et al.[21]

proposed a multi-step model where mechanical
stimulation, perhaps transmitted by an integrin to an
associated G-protein, led to G-protein-mediated
opening of a calcium channel. The resulting calcium
influx activated phospholipase (PLC) to generate
inositol triphosphate (IP3), which diffused through
the cell and created the observed wave of calcium
release from internal stores.

A limitation of the McDonald model is that the
experiments were conducted with U2/OS cells,
which lack voltage-gated calcium channels. More
recent experiments with adult primary osteoblasts
demonstrated that the increase in intracellular calci-
um could be partially blocked by inhibiting voltage-
gated calcium channels.[71] Thus, the initial influx of
extracellular calcium could result from the opening
of both G-protein-activated and voltage-gated calci-
um channels. A potential role of both calcium chan-
nel types in osteoblasts was underscored by studies
in which load-induced responses were negated when
either the L-type (voltage activated) channels or the

© 2008 Adis Data Information BV. All rights reserved. Sports Med 2008; 38 (2)
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Extracellular matrix

Fluid flow

Interstitial space

Ca2+
Ca2+

Ca2+

Fig. 1. A variety of independent but interacting mechanosensors have been identified in osteoblasts. (1) Stretch activated Ca2+ channels
open, activating intracellular enzymes (e.g. phospholipase C, protein kinase C) and causing membrane depolarization with subsequent
voltage-gated channel opening and further Ca2+ entry. (2) Integrins are activated by deformation of their extracellular binding partners (e.g.
collagen, osteopontin) by fluid shear or substrate strain. (3) G-proteins in the lipid bilayer are activated. (4) The cytoskeleton is deformed,
providing enhanced docking and activation sites for kinases. These are the four ‘primary’ mechanosensors that are believed to directly
sense mechanical perturbations. From here, mechanically sensed signals are transmitted by intracellular enzyme activity to the nucleus (A).
Signalling is propagated to neighbouring cells via (B) gap junctions (resulting in influx of extracellular Ca2+) or (C) adenosine triphosphate
(ATP) [resulting in mobilization of intracellular Ca2+] or other diffusible messengers (cytokines, NO). IP3 = inositol triphosphate; MAPK =
mitogen-activated protein kinases (e.g. ERK-1/2).

‘stretch-activated’ (i.e. G-protein-mediated[21]) and how they would modulate ion channels remains
channels were blocked. A dependence on both calci- unknown. G-proteins are required in some instances
um channel types was demonstrated for load-in- of integrin-mediated, calcium- and cytoskeleton-in-
duced transforming growth factor-β (TGFβ) dependent signalling, thus they may play a variety of
upregulation.[26] The downregulation of HB-GAM possible roles[77] that have not yet been fully de-
in fetal osteoblast precursors (a critical event in scribed in human bone cells. Despite the lack of
osteoblast differentiation) was also dependent on mechanistic understanding, a vital role of G-proteins
both types of calcium channel.[43] in proliferation and extracellular matrix production

was shown in the studies reviewed. In vitro ultra-Despite the importance of different classes of
sound-treated fetal pre-osteoblasts displayed a rapidcalcium channels in osteoblast mechanosensation,
activation of membrane-bound Gαi-1/3 protein.[55]their structure and mechanism of action have not
In this study, a Gi-protein inhibitor (PTX) blockedbeen determined in human osteoblasts. An intrigu-
ERK1/2 activation (a key requirement of survival,ing study recently demonstrated that a calcium-
proliferation and extracellular matrix production inbinding protein (Annexin V, which interacts with
osteoblasts). However, in another study, PTX hadphospholipid bilayers to form Ca2+ selective chan-
no effect on ERK1/2-dependent, fluid-flow-inducednels) plays a substantial role in flow-induced calci-
proliferation.[19] The conflicting results on the roleum responses and downstream transcriptional acti-
of PTX-dependent ERK1/2 activation and subse-vation.[10] Further studies in human bone cells may
quent proliferation may speak to the variety of calci-shed light on the role of Annexin V in mechanically
um-entry mechanisms (G-protein-dependent and -induced osteoblast responses.
independent) reported above, as well as the large

4.2 G-Proteins number of G-proteins that may be activated in dif-
ferent scenarios.

From other cell types, it is known that the ability
of Gi-proteins to modulate calcium channels depen- 4.3 Integrins
ds on intact linkages between integrin-β1 and the
cytoskeleton, with which Gi proteins co-localize.[77] Integrins are transmembrane receptors consisting
However, the precise manner in which G-proteins of α and β subunits, which bind to, and are activated
are activated at the integrin-cytoskeleton complex by, specific elements of the extracellular matrix (i.e.

© 2008 Adis Data Information BV. All rights reserved. Sports Med 2008; 38 (2)
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osteopontin, collagen, fibronectin). Binding and ac- 4.4 Cytoskeleton
tivation are both required to effectively transduce

In addition to their signalling role in mechano-mechanical forces in the matrix into a signalling
transduction, integrins also play a mechanical func-response in the cell.[77] Primary osteoblasts express
tion by transmitting forces to the cytoskeleton,α2, α3, α4, α5, αv, α6, β1, β3 and β5.[78,79]
whose independent role as a mechanosensor has

In human osteoblasts, integrin signalling was been shown.[80] Pommerenke et al.[65,66] found that
studied in response to fluid shear and substrate def- cyclic stress delivered via integrins led to an in-
ormation. Fluid flow led to α5β3 clustering[51] and crease in the levels of cytoskeletal-bound phop-
an increased association between α5β3 integrin and shotyrosines, and a translocation of FAK from the
Shc (an adaptor protein known to play a role in the cytosol to the cytoskeleton. Intact microtubules
activation of Ras, upstream of ERK1/2). This sug- were shown to be a requirement for load-induced
gests that integrins may be directly responsible for differentiation[43] and proliferation.[60] A precise
some fluid-flow-induced osteoblast effector re- analysis of load-bearing and sensing by distinct
sponses. cytoskeletal elements awaits further study: the care-

ful use of cytoskeletal inhibitors may generate use-Several studies showed calcium to be a player in
ful data, as in animal cells.[81]

integrin-mediated mechanical forces. Hughes et
al.[63] showed that a rise in [Ca2+]i was induced when

5. Signal Transmissionintegrins were clustered on beads and mechanically
stimulated, more so than clustering alone. Pommer-

5.1 Intracellular Signallingenke et al.[65,66] compared different duty cycles of
integrin stimulation, and found that 1 Hz cyclic Although the precise interactions of calcium
stress was more effective at causing an increase in channels, G-proteins, integrins and the cytoskeleton
[Ca2+]i than continuous or low frequency (0.1 Hz) have yet to be established, downstream osteogenic
stimulation. Interestingly, osteoblasts and bone mar- signalling was shown to converge on the activation
row stromal cells displayed different kinetics of of several key intracellular enzymes.
[Ca2+]i following integrin mechanical stimulation. A key load-sensing event in many cells is the
The bone marrow cells demonstrated a single peak, generation of nitric oxide (NO). From animal exper-
whereas osteoblasts showed single and oscillating iments, NO is essential in the maintenance of bone
transients, suggesting important differences in calci- mass.[82] In primary osteoblasts, Klein-Nulend
um-dependent mechanotransduction according to et al.[20] found that fluid flow stimulated an early
differentiation status. burst of NO release (peaking within 5 minutes), as

In terms of events downstream of integrins, load- well as an increase in eNOS mRNA. NO production
enhanced binding of an early response transcription was also examined in flow-stimulated or cyclically
factor (c-fos) was abolished by anti-β1 integrins, as stretched primary osteblasts at a longer timepoint
well as by inhibitors of calcium channels and a (24 hours).[22] Both types of loading stimulated NO
calcium-dependent kinase (PKC).[47] Similar at- by equivalent amounts. NO could potentially stimu-
tempts to modulate or block integrin signalling us- late proliferation and extracellular matrix produc-
ing various substrates and antibodies did not affect tion through the Ras-Raf-MEK-ERK cascade by
ERK-1/2 activation, suggesting that integrin-inde- binding to a regulatory site on Ras, but this has not
pendent mechanosensory paths may be responsible yet been shown in human bone cells.[83-85]

for ERK-1/2 activation. Salter et al.[48] used an ex- The downstream effects of NO were examined in
tensive panel of antibodies and peptides to block a key study by Kapur and co-workers,[19] in which
various integrins and integrin subunits and showed primary osteoblasts were subjected to constant fluid
that a variety of α and β integrins are involved in flow. An NO inhibitor prevented ERK-1/2 activa-
load-induced changes in membrane potential, but tion after 30 minutes as well as the increase in
that different duty cycles of stimulation act through proliferation and ALP activity at 24 hours (see sec-
different integrin subunits. tion 6), suggesting that the Raf-Mek-ERK-1/2 cas-
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cade and its downstream osteogenic effects are pri- effector cell types. Unlike osteoblasts, osteoclast
marily activated by a NO-dependent pathway. calcium waves were not dependent on gap junctions,
Kapur et al.[19] found that blocking cyclo-oxygenase but only on purinergic (P2X7) receptors.
(COX)-1 and -2 with indomethacin abolished the The majority of studies that examined pros-
load-induced proliferation and ALP activity while taglandin E2 (PGE2) release in response to loading
leaving ERK-1/2 levels unaffected. This implies that demonstrated that this is a prominent response to
COX-1/2 induction, downstream of NO and ERK-1/ loading in primary and transformed osteoblasts.
2, may be a required chain in the sequence of events Downstream of PGE2, Sakai et al.[26] found TGFβ
leading to flow-induced bone formation. messenger RNA (mRNA) and protein were both

elevated following fluid shear stress. However, in
addition to this osteogenic signalling, interleukin-115.2 Intercellular Signalling – Autocrine and
was released by flow-stimulated osteoblasts in suffi-Paracrine Mechanisms
cient quantities to differentiate osteoclasts from pre-
cursors.[26] This study suggests that the crucial co-A crucial role was also demonstrated for direct
operation between these two effector cell types inintercellular communication mediated by gap junc-
bone remodelling may be mediated by load-inducedtions, as well as indirect communication via diffusi-
paracrine effects.ble messengers.

Regarding the different mechanosensory roles ofExamination of changes in the concentration of
various bone cell populations, a question that wasfree intracellular calcium demonstrated that gap
not addressed by any of the studies in the presentjunctions and diffusible messengers may cooperate
systematic review is how human osteocytes signal toto transmit mechanical signals. For example, block-
osteoblasts and osteoclasts. Given that osteocytesing the adenosine triphosphate (ATP) receptors in
may be the most important mechanosensory cell inHOBIT osteoblast-like cells reduced the radius of
bone, clearly a method for culturing human osteo-the cell-cell calcium wave in response to membrane
cytes would allow potentially relevant mechanismsdeformation. However, a smaller calcium wave per-
to be more closely examined.sisted despite the reduction in response to ATP

receptor blockade. This ATP-independent calcium
6. Effector Responsewave could be abolished by a gap-junction inhibi-

tor.[67]

Further experiments in response to fluid flow 6.1 Mechanical Stimuli Enhance Synthesis
(induced by displacing cell culture medium with a and Mineralization of the Extracellular Matrix
pipette) found a 4- to 5-fold increase in ATP release
into the medium.[24,25] When the ATP-rich medium A large number of studies examined the effect of
from stimulated cells was added to resting cultures, cyclic strain on extracellular matrix synthesis. Bone
calcium transients were again observed. In other cell consists largely of a mineralized extracellular matrix
types, ATP release has been proposed to involve whose mass and architecture result from a balance
either G-protein- and integrin-dependent vesicle between production and resorption. The major com-
trafficking[86] or membrane-bound ATP- ponents of the organic matrix (type I collagen, oste-
synthases,[87] but the mechanisms in human bone opontin and osteocalcin) and its associated minerals
cells have not yet been examined. (hydroxyapatite) were examined in response to

The question of cell-cell communication also loading, as was the expression and activity of ALP,
gave rise to an interesting study of how osteoblasts an enzyme whose activity corresponds closely to the
and osteoclasts may signal to one another. Calcium onset of mineralization.[88] In general, these studies
waves originating in mechanically stimulated osteo- demonstrated that several key stages of extracellular
blasts could be passed directly to adjacent osteo- matrix assembly including transcription, secretion
clasts, and vice versa.[9] This represents the first and mineralization, could be stimulated by physio-
direct evidence of load-induced intercellular com- logical levels of strain (see table I). The activity and
munication between two different human bone cell mRNA levels of ALP were enhanced, as was matrix
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calcification by 16 days of intermittent cyclic frequency and intensity remain to be determined,
strains.[31] The enhancement of ALP could be stimu- clearly the magnitude of extracellular matrix stimu-
lated by as small a stimulus as 15 minutes of 0.06% lation in response to gross or ultrasound vibration
strains per day.[36] Collagen I, osteocalcin and osteo- can reach levels similar to those induced by fluid
pontin secretion or mRNA levels were also general- flow or substrate strain.
ly higher in strained as opposed to unstrained cul- Finally, the effect of actual and simulated
tures (see table I for citations). microgravity were investigated in human osteoblast-

like cells, and demonstrated significant decreases inThe effect of fluid flow on the matrix was exam-
ALP activity and mRNA expression, as well asined in five studies. Kapur and co-workers[19] show-
osteocalcin and collagen expression.[72,75] Theseed that 30 minutes of constant fluid flow at 20
studies demonstrated that gravitational stimulationdynes/cm2 resulted in approximately a 30% increase
of mechanotransduction pathways is a normal re-in ALP activity. This ability of fluid flow to enhance
quirement for high levels of extracellular matrixALP activity was later confirmed and shown to be
production by osteoblasts.dependent on both PGE2 and TGFβ.[14] In a third

study, You et al.[30] reported a 100% increase in
osteopontin mRNA by fetal osteoblasts 3 days after 6.2 Mechanical Stimuli Cause
1 hour of pulsatile fluid flow (2 N/m2, 1 Hz). This Osteoblast Proliferation
effect was subsequently confirmed in bone marrow-
derived stromal cells.[11] A fifth report showed a Proliferation of osteoblasts is a key event in bone
50% decrease in collagen I protein levels 24 hours formation[89] and remodelling.[90] There was ample
following 1 hour of cyclic fluid flow (5 Hz, evidence that primary osteoblasts were induced to
0.6 Pa).[22] Taken together, the studies suggest a proliferate both by relatively short periods of fluid
stimulatory effect on bone matrix production and flow, or by cyclic substrate strains at physiological
mineralization in response to fluid flow. However, levels.
the effect of fluid flow on collagen I – an essential Ten of the 25 studies using substrate deformation
element of the bony matrix – requires further study. examined proliferation. Of these, eight reported an

The influence of intermittent compressive load- increase in proliferation in response to strains rang-
ing on osteoblasts was examined in a single study.[5] ing from 0.06% to 2.5%. One study[44] reported a
mRNA levels of matrix metalloproteinase (MMP)-1 dose-response to strain magnitude, with a progres-
and -3 were enhanced by mechanical stimulation, sive decline in proliferation in response to strains
whereas collagen I and osteocalcin were decreased. higher than 1%. Cheng et al.[6] reported a peak
This suggests that compressive loading may nega- proliferative response at strains of 0.3%. Of the two
tively modulate important aspects of bone matrix negative studies, one used experimental orthopaedic
remodelling.[5] The coupling mechanisms have ap- substrates.[53] The other used a higher duration of
parently not yet been examined for this type of loading (2.78 hours vs 15–60 minutes, i.e. >10 000
loading stimulus. cycles).[50] The latter study implies that excessive

cycle number may have an inhibitory rather than aVibration of osteoblasts through acoustic or
stimulatory effect on osteoblast proliferation.mechanical energy resulted in a similar variety of

responses as cyclic strains, but the variation could Three studies examined the effect of constant
apparently be attributed to the stimulation character- fluid flow on proliferation. All three studies reported
istics. A dose response was found in the effect of a significant (50–100%) increase in proliferation or
gross vibration on ALP activity in osteoblast cul- DNA content of primary osteoblasts in response to
tures; lower frequencies (20 Hz) depressed ALP 30 minutes or 1 hour of constant fluid flow.[13,16,19]

activity, whereas higher frequencies (30–60 Hz) Studies examining pulsatile fluid flow found no
progressively increased ALP activity. Similarly, influence on proliferation in cells from post-meno-
ALP and osteopontin mRNA levels were increased pausal women.[17,18] However, two other studies,
by 3.0 MHz only at higher intensities (0.39 W/cm2 one using bone marrow-derived stromal cells and
and higher).[57] Although the optimal combination of one using primary osteoblasts, did show an increase
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in proliferation.[11,14] This suggests that some as- 6.4 Inappropriate Load Levels Impair
Survival Signalspects of the post-menopausal osteoblast phenotype

may negatively influence their ability to respond to
The issue of mechanical factors leading to cellsome types of mechanical stimulation.

death versus survival or proliferation received sur-
Sensory (20–60 Hz) and ultrasound levels of prisingly little attention given the association of

vibration were also reported to significantly affect osteocyte apoptosis with osteoporosis. Lacouture et
osteoblast proliferation. Standford et al.[50] reported al.[42] observed significant levels of cell detachment
no change in proliferation in response to 20 Hz and rupture of cell adhesions in response to high
vibration; however, the results were based on cells levels of strain (10–20%) on cells plated on a variety
from a single biopsy. In contrast, Rosenberg et of physiological substrates. The formation of inte-

grin-containing focal adhesions was necessary foral.[59,60] showed that 20 Hz stimulated proliferation
optimal strain resistance. It is known that detach-by approximately 50%, whereas 30–60 Hz caused
ment of adherent cell types can lead to rounding andeither no change or a slight decrease in DNA synthe-
apoptosis (a phenomenon known as ‘anoikis’[92]),sis. Doan et al.[56] reported a similar magnitude of
but there is no evidence yet that this phenomenonproliferation (50%) in response to several types and
occurs in vivo in response to high loads in bone.

intensities of ultrasound-induced vibration. Thus,
Lack of load was also shown to influence osteo-

the rather limited evidence suggests that osteoblasts blast survival pathways. Gravitational unloading
can respond favourably or negatively to a wide was shown to reduce the DNA binding of a survival-
range of vibration frequencies. promoting transcription factor in response to cyto-

kine stimulation (tumour necrosis factor-α).[74] The
effect on viability was not directly assessed, but the6.3 Physiological Loading Enhances
results suggest that gravitational unloading may sen-Survival Signals
sitize cells to undergo apoptosis as shown in other
cell types.[93] Finally, the Bcl/Bax ratio was de-

Physiological loading was shown to induce survi- creased in unloaded as compared with loaded osteo-
val signals in human osteoblasts. Fluid shear in- blasts, suggesting that modulation of the mitochon-
creased the expression of a pro-survival protein drial pathway may be decisive in preventing cell
Bcl-2, whereas an important pro-death protein (Bax) death from lack of loading.[74]

remained unchanged. Ogata[23] showed that fluid
flow can enhance the levels of epidermal growth 6.5 Osteoblast Differentiation is a
factor receptor, which could also potentially impact Determinant of Mechanical Loading
cell survival. Other potentially survival-enhancing
effects observed (although not consistently) includ- The process of differentiation could be triggered

or enhanced by mechanical loading. Levels of theed clustering and upregulation of β1-integrins,[33]

osteoblast differentiation marker Cbfa-1 were in-release of autocrine/paracrine survival factors such
creased in fetal osteoblasts and bone marrow-de-as insulin-like growth factor (IGF)-I[34] or IGF-II[6]

rived stromal cells in response to cyclic strain orand activation of the estrogen receptor.[6] In no case,
ultrasound.[39,55] Oscillatory fluid flow also resultedhowever, were the effects of loading on cell survival
in stromal cell proliferation and increased osteopon-assessed directly. Therefore, the impact of these
tin and osteocalcin expression,[11] which are key

events on the susceptibility to cell death requires osteoblast products. Similarly, physiological cyclic
further study. This may be particularly relevant giv- strain reduced HB-GAM expression (typical of un-
en that excessive osteocyte apoptosis is a prominent differentiated pre-osteoblasts) in primary bone cells.
feature of osteoporosis,[91] and apoptosis can be The load-induced reduction of HB-GAM in cultured
prevented by fluid shear in vitro in some animal osteoblasts is consistent with the hypothesis that
models.[12] cultured osteoblasts tend to dedifferentiate when
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expanded in cell culture,[7] but the mature phenotype tion of osteoclasts.[27] These studies prove in princi-
can be restored by mechanical loading.[43] ple that load can induce a co-coordinated response

among the various cell types of bone, but manyIn fetal pre-osteoblastic cells, cyclic strains
questions remain, particularly with regard to thecaused apoptosis of undifferentiated cells, whereas
specific signals leading to bone breakdown or build-the same level of strain caused proliferation when
up in human bone.applied during differentiation.[29] Although limited,

such studies begin to provide a picture in which the Most interestingly, the results from several stud-
fate of bone cells is determined by an integration of ies support a hypothesis that pathology may result
past and present mechanical and biochemical/hor- from a fault in the mechanostat mechanism. Osteo-
monal signals, with the state of differentiation of the blasts from post-menopausal women did not demon-
cell emerging as a key factor determining the load strate the same proliferative effector response to
response. This was highlighted by studies in a fluid flow as did non-menopausal cells (see table I).
human osteoblast cell line (SV-HFO), which re- Furthermore, osteoblasts derived from patients with
vealed that the effect of stretch on ERK1/2 phospho- osteoporosis were shown to be unresponsive in
rylation was strongest at later stages of differentia- terms of two key signal transmission events; the
tion.[54] release of PGE2[18] and downstream induction of

Henriksen and co-workers[94] shed some light on TGFβ secretion.[45] A possible explanation is that
possible mechanisms that may underlie the different the upstream process of biochemical coupling may
effector responses observed with osteoblasts at early be dysfunctional. One specific possibility is the es-
or later stages of differentiation. They observed that trogen receptor (ER), whose expression is dimin-
human bone-marrow-derived osteoblasts, which are ished in osteoblasts during the post-menopausal
at an earlier stage of differentiation rely predomin- period.[96] Cheng et al.[6] showed that load-induced
antly on purinergic ATP receptors for the propaga- signal transmission was dependent on the activation
tion of intracellular calcium waves to their of the ER, but not on the release of estrogen. An
neighbours, whereas in more fully differentiated intriguing hypothesis is that internal activation of
osteoblasts, direct transmission via gap junctions the ER receptor by load-induced ERK-1/2 activity is
was the main mechanism.[94] a requirement for osteogenic cell signalling. In

animal studies, ERK-1/2 has been shown to phos-
phorylate the ER at a regulatory site (ser 122) in7. Implications and Future Directions
response to cyclic strain.[97]

This type of ‘cross-talk’ between mechanical andIn vitro studies have begun to pinpoint molecular
growth factor signals might also underlie the en-mechanisms by which the mechanostat may operate,
hanced bone growth seen in children, whose higherand have focused in particular on mechanisms that
systemic levels of IGF-I could potentiate thecontribute to the osteogenic effect of mechanical
ERK-1/2 path and thereby amplify the osteogenicloading.
effect of loading.The majority of studies were conducted on osteo-

blasts. A dearth of studies in osteocytes (believed to The intra- and inter-cellular pathways used in the
be the primary load sensor) represents a major gap in biochemical coupling and signal transmission
current understanding of mechanotransduction in phases are not dedicated to load alone, but instead
human bone. Signalling between fluid-flow stimu- use much of the same molecular machinery as
lated mouse osteocytes and human osteoblasts has growth factors, hormones and integrins. McDonald
recently been reported.[13,95] Fluid-flow-stimulated et al.[21] showed that calcium channel opening could
osteocytes signalled via gap junctions to osteoblasts, be potentiated when cyclic adenosine monophos-
which increased their ALP activity in an ERK-1/2 phate (cAMP) levels were experimentally elevated,
dependent manner.[13] Evidence was also reported which points to a possible role of cAMP-inducing
for ATP-dependent communication of load-induced agents such as parathyroid hormone, which is itself
calcium waves between human osteoblasts and os- increased in response to exercise.[21,96] From animal
teoclasts[9] as well as osteoblast-induced differentia- studies, PTH is also known to influence connexin 43
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expression and cell-membrane localization,[98,99] study of load-sensing in a variety of human cell
types.which could enhance cell-cell coupling and thereby

sensitize bone cells to loading. These findings sup-
port an integrated model[100,101] with load and sys- 8. Conclusions
temic influences as ‘vectors’ integrated by the cell at

Mechanical stimulation of human osteoblasts isthe biochemical couple and signal transmission
capable of enhancing the three key steps in bonephases.
formation, including osteoblast differentiation and

An unanswered question that arises from the proliferation, collagen secretion and mineralization
current review – and one with immediate implica- (alkaline phosphatase activity). While physiological
tions for exercise prescription – is, why is excessive levels of bone strain induce osteogenic responses
cycle number associated with a diminishing rather among human osteoblasts, fluid flow appears to be a
than an increasing response to cyclic strain? At this more potent stimulus. The mechanical induction and
point, the downregulation of mechanically induced propogation of the osteogenic signal is accom-
signals remains essentially unexamined in human plished in large part through growth factor signal-
bone cells. Cytoskeletal stiffening or upregulation of ling, which underscores both the emerging view of
cell-cell and cell-matrix adhesions could lead to “exercise as a drug” and the potential in general for
acute load-dampening responses at the level of therapeutic exercise to stimulate anabolic cellular
the mechanical couple.[33,35,102] Alternatively, the activity in bone, as in other musculoskeletal tissues.
biomechanical couple may be responsible. A normal
part of any activation event is that a downregulation Acknowledgements
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