Introduction to Nuclear and Particle Physics

Lesson 4

interactions of photons in matter

A photon with an energy of $E_{\gamma} = 100 \text{ keV}$ interacts with matter. Which of the following processes has the highest probability to happen?

Photons traveling in +x-direction are entering a material at x = 0. Which graph does best represent the distribution of the energy deposited in the material?

The plan for today

Introduction to particle and nuclear physics

Interaction of particles with matter

Charged particles

Gamma radiation

Photoelectric effect

- Photon absorbed, orbital electron kicked out
- Energy passed to electron and nuclear recoil

Dependencies (rough approximation) $\mu_{PE} \sim \frac{Z^n}{E_{\gamma}^{3.5}} \qquad 3 < n < 5$ -> dominant at low energy

 $E_e = E_{\gamma} - E_B$

 $E_{\gamma} = h\nu$

Compton Scattering

- orbital electron kicked out
- · Photon scattered with lower energy

Pair production

• e⁺- e⁻ pair created in field of nucleus (or electron)

Dependencies

(approximately)

 $\mu_{\rm PC} \sim {\rm Z}^2 {\rm E}_{\gamma}$

energies (> few MeV)

-> dominant at high

• Minimum energy: $E_{\gamma} \ge 2m_e$

[https://cerncourier.com/a/the-legacy-of-the-bubble-chamber]

Introduction to particle and nuclear physics

Group work about gamma spectroscopy - introduction

eta decays accompanied by γ decays

Group work about gamma spectroscopy - introduction

Group work about gamma spectroscopy - introduction

Recap: The Compton spectrum

Group activity

The plot on the right shows a gamma spectrum measured with a ⁴⁹Cr source (decay scheme below).

Can you explain the origin of the peaks and edges in the energy spectrum?

Group activity - solution

PH: Photoelectric absorption

CE: Compton edge

AN: Annihilation peak (e⁺ annihilates in source)

One more spectrum

Detector spectra - question

We want to measure the energy spectrum of γ radiation with a large Germanium detector.

Which statements are correct?

- A) The backscatter peak is a direct consequence of Compton scattering in the surrounding material.
- B) Every photo-peak will be accompanied by a Compton edge.
- C) We will not absorb the full energy of any photon in the detector.
- D) The more material we place around the detector, the more clear will be our spectrum.

Detector spectra - question

We want to measure the energy spectrum of γ radiation with a large Germanium detector.

Which statements are correct?

The backscatter peak is a direct consequence of Compton scattering in the surrounding material.

Every photo-peak will be accompanied by a Compton edge.

- C) We will not absorb the full energy of any photon in the detector.
- D) The more material we place around the detector, the more clear will be our spectrum.

Summary: Interaction of gamma radiation in matter

Pair production

 $\mu_{\rm PC} \sim {\bf Z}^2 {\bf E}_{\gamma}$

Most photons are absorbed when they interact in material.

 $\mu = \mu_{\mathbf{PE}} + \mu_{\mathbf{CS}} + \mu_{\mathbf{PC}}$

Compton scattering

 $\mu_{\rm PE} \sim \frac{1}{\mathbf{F}}$

No continuous energy loss.

 \Rightarrow Intensity goes down exponentially with depth.

$$0.01 \qquad Photo effect \\ 0.01 \qquad Photo effect \\ 0.01 \qquad 0.01 \qquad 0.1 \qquad 1 \qquad 10 \qquad 100 \\ E_{\gamma} [MeV]$$

 $I(x) = I_0 \cdot e^{-\mu x}$

Photo effect

 $\mu_{\rm PE} \sim \frac{{\bf Z}^{\rm n}}{{\bf E}_{\rm v}^{3.5}}$

Pair Annihilation: The PET scan

How does positron emission tomography work?

[http://large.stanford.edu/courses/2015/ ph241/krishnamurthi1/images/f2big.png]

[https://en.wikipedia.org/wiki/Positron_emission_tomography# /media/File:ECAT-Exact-HR--PET-Scanner.jpg]

A photon with an energy of $E_{\gamma} = 100 \text{ keV}$ interacts with matter. Which of the following processes has the highest probability to happen?

A photon with an energy of $E_{\gamma} = 100 \text{ keV}$ interacts with matter. Which of the following processes has the highest probability to happen?

D)

Pair production in nuclear field

Photons traveling in +x-direction are entering a material at x = 0. Which graph does best represent the distribution of the energy deposited in the material?

Photons traveling in +x-direction are entering a material at x = 0. Which graph does best represent the distribution of the energy deposited in the material?

