Introduction to Nuclear and Particle Physics

Lesson 12

nuclear shell model parity of states and particles

Warm-up question 1

Knowing that the nuclear magic numbers are 8, 20, 28, 50 and 82, judge the following statements:

A) The spin-parity of the
$${}^{16}_8O$$
 nucleus is $J^P = 0^+$.

B) The parity of the
$${}^{15}_7Ni$$
 nucleus is even (+1).

- C) The neutron absorption cross section of ${}^{86}_{36}Kr$ is higher than the one of ${}^{85}_{36}Kr$.
- D) The proton separation energy of ${}^{120}_{50}SN$ is higher than the one of ${}^{120}_{51}SN$.
- E) The proton separation energy of ${}^{120}_{50}SN$ is higher than the one of ${}^{122}_{50}SN$.

What do we do today?

Nuclear shell model

Energy states I-s coupling

Parity & Co

General rules

Introduction to particle and nuclear physics

Quick recap on binding energies

What is the scale of the nuclear binding energy per nucleon?

keV.

Few MeV.

Hundreds of MeV.

Few GeV.

 \Box About 13 eV.

Depends on the reference system.

What is the scale of the nuclear binding energy per nucleon?

keV.

Few MeV.

Hundreds of MeV.

Few GeV.

 \Box About 13 eV.

Depends on the reference system.

Fission - binding energy

[https://cnx.org/contents/IO_vrGwv@3/Nuclear-Binding-Energy]

What is (roughly) the energy released in a single nuclear fission event of Uranium?

 $E_{1ev} \approx (8-7) \frac{\text{MeV}}{\text{Nucleon}} \cdot 200 \text{ Nucleon} = 200 \text{ MeV}$

At which rate do fission events take place in a reactor with an output power of P = 100 MW?

200 MeV = $2 \cdot 10^8 \cdot 1.6 \cdot 10^{-19}$ J = $3.2 \cdot 10^{-11}$ J

rate
$$= \frac{P}{E_{1ev}} = \frac{10^8 \text{ W}}{3.2 \cdot 10^{-11} \text{ J}} = 3 \cdot 10^{18} \frac{1}{\text{ s}}$$

Shell model and energy states

Motivation for the nuclear shell model

Observations:

Nuclei with specific numbers of p⁺ / n come with:

- specifically high binding energies
- large energy gaps to first excitation

"*Magic numbers*" point to closed shells of nucleons! (analogously to atomic shells)

EXPERIMENTAL EVIDENCE FOR MAGIC NUMBERS

Energie des ersten angeregten Zustandes

The Woods-Saxon potential

mean-field potential:

- Potential which nucleon sees is created by • other nucleons
- Removal of nucleons / decay changes • the potential!

Solution of stationary Schrödinger equation for spherically symmetric potential: $E\psi = H\psi$

Factorization in radial and angular part

 $R_{nl}(r) \qquad Y_l^m(\theta,\phi)$

Spin-orbit coupling and nucleon energy levels

Lower single nucleon energy states (p⁺ and n differ slightly at higher energies)

I-s coupling

possible values of quantum numbers:

$$n = 1...\infty$$

$$l = 0...\infty$$

$$s = \frac{1}{2}$$

$$j = l \pm \frac{1}{2}$$

Fine structure turns out to be much stronger than in atoms!

Remarks on parity:

- Each nucleon state brings in $(-1)^l$ to the total parity.
- Full shells have J=0, parity +1 and $\mu = 0$.
- Unpaired nucleon states define J and parity of whole nucleus

More energy levels...

Examples:

- Ground state of ${}^{17}_{8}$ O₉ (8 protons, 9 neutrons) is defined by single neutron in 1d^{5/2}: $J^P = 5/2^+$
- Ground state of 3_2 He₁ (2 protons, 1 neutron) is defined by missing neutron in 1s^{1/2}: $J^P = 1/2^+$

Please answer the following questions together in groups. Be ready to discuss your results in the plenary later-on.

What is the maximal number of neutrons that can be in the 1d energy levels of a nucleus?

What is the maximal number of neutrons that can be in the 1d energy levels of a nucleus?

The number if neutrons per j state is 2j+1.

Therefore, 6+4=10 neutrons can be in the two 1d levels.

Give the spin, parity and magnetic moment of the ${}_{8}^{16}O_{8}$ nucleus (Notation ${}_{Z}^{A}O_{N}$).

Give the spin, parity and magnetic moment of the ${}_{8}^{16}O_{8}$ nucleus (Notation ${}_{Z}^{A}O_{N}$).

Give the spin, parity and magnetic moment of the ${}^{17}_{8}O_{9}$ nucleus.

Give the spin, parity and magnetic moment of the ${}^{17}_{8}O_{9}$ nucleus.

One neutron in $1d^{5/2}$ remains on top of closed shells.

$$J^P = \frac{5}{2}^+ \qquad l = 2$$

Since the neutron is uncharged, the magnetic moment is given by its own magnetic moment (no contribution to μ from orbital momentum)

$$\mu = \mu_{\text{Neutron}} = -1.91 \ \mu_N \qquad \mu_N = \frac{e\hbar}{2m_p}$$

Give the spin and parity of the first excited state of the ${}_{8}^{17}O_{9}$ nucleus.

Give the spin and parity of the first excited state of the ${}_{8}^{17}O_{9}$ nucleus.

Give the spin and parity of the $^{15}_{7}N_{8}$ nucleus.

Introduction to particle and nuclear physics

Give the spin and parity of the $^{15}_{7}N_{8}$ nucleus.

Give the spin and parity of the first excited state of the $^{15}_{7}N_8$ nucleus.

Give the spin and parity of the first excited state of the ¹⁵₇N₈ nucleus.

Why is the binding energy of ${}^{14}_{8}O_{6}$ smaller than that of ${}^{14}_{7}N_{7}$?

Introduction to particle and nuclear physics

Why is the binding energy of ${}^{14}_{8}O_{6}$ smaller than that of ${}^{14}_{7}N_{7}$?

Coulomb repulsion of more protons leads to lower binding energies.

Warm-up question 1

Knowing that the nuclear magic numbers are 8, 20, 28, 50 and 82, judge the following statements:

A) The spin-parity of the
$${}^{16}_8O$$
 nucleus is $J^P = 0^+$.

B) The parity of the
$${}^{15}_7Ni$$
 nucleus is even (+1).

- C) The neutron absorption cross section of ${}^{86}_{36}Kr$ is higher than the one of ${}^{85}_{36}Kr$.
- D) The proton separation energy of ${}^{120}_{50}SN$ is higher than the one of ${}^{120}_{51}SN$.
- E) The proton separation energy of ${}^{120}_{50}SN$ is higher than the one of ${}^{122}_{50}SN$.

Warm-up question 1

Knowing that the nuclear magic numbers are 8, 20, 28, 50 and 82, judge the following statements:

The spin-parity of the
$${}^{16}_8O$$
 nucleus is $J^P = 0^+$.

B) The parity of the
$${}^{15}_7Ni$$
 nucleus is even (+1).

is odd (unpaired proton in 1p^{1/2} orbital)

C) The neutron absorption cross section of ${}^{86}_{36}Kr$ is higher than the one of ${}^{85}_{36}Kr$. Is lower! (nucleus is happy with 50 neutrons)

No.

The proton separation energy of ${}^{120}_{50}SN$ is higher than the one of ${}^{120}_{51}SN$.

E) The proton separation energy of ${}^{120}_{50}SN$ is higher than the one of ${}^{122}_{50}SN$.

Is lower! (more neutrons -> more glue)

