Introduction to Nuclear and Particle Physics

Lesson 12

nuclear shell model
parity of states and particles

Warm-up question 1

Knowing that the nuclear magic numbers are 8, 20, 28, 50 and 82, judge the following statements:
A) The spin-parity of the ${ }_{8}^{16} O$ nucleus is $J^{P}=0^{+}$.
B) The parity of the ${ }_{7}^{15} \mathrm{Ni}$ nucleus is even (+1).
C) The neutron absorption cross section of ${ }_{36}^{86} \mathrm{Kr}$ is higher than the one of ${ }_{36}^{85} \mathrm{Kr}$.
D) The proton separation energy of ${ }_{50}^{120} \mathrm{SN}$ is higher than the one of ${ }_{51}^{120} \mathrm{SN}$.
E) The proton separation energy of ${ }_{50}^{120} \mathrm{SN}$ is higher than the one of ${ }_{50}^{122} \mathrm{SN}$.

What do we do today?

Nuclear shell model

Energy states I-s coupling

Parity \& Co

General rules

Quick recap on binding energies

What is the scale of the nuclear binding energy per nucleon?
$\square \mathrm{keV}$.
\square Few MeV.
\square Hundreds of MeV .
\square Few GeV.
\square About 13 eV .
\square Depends on the reference system.

What is the scale of the nuclear binding energy per nucleon?
$\square \mathrm{keV}$.
\square Few MeV.
\square Hundreds of MeV .
\square Few GeV.
\square About 13 eV .
\square Depends on the reference system.

Fission - binding energy

What is (roughly) the energy released in a single nuclear fission event of Uranium?

$$
E_{1 e v} \approx(8-7) \frac{\mathrm{MeV}}{\text { Nucleon }} \cdot 200 \text { Nucleon }=200 \mathrm{MeV}
$$

At which rate do fission events take place in a reactor with an output power of $P=100 \mathrm{MW}$?

$$
200 \mathrm{MeV}=2 \cdot 10^{8} \cdot 1.6 \cdot 10^{-19} \mathrm{~J}=3.2 \cdot 10^{-11} \mathrm{~J}
$$

$$
\text { rate }=\frac{P}{E_{1 e v}}=\frac{10^{8} \mathrm{~W}}{3.2 \cdot 10^{-11} \mathrm{~J}}=3 \cdot 10^{18} \frac{1}{\mathrm{~s}}
$$

Shell model and energy states

Motivation for the nuclear shell model

Observations:

Nuclei with specific numbers of $\mathrm{p}^{+} / \mathrm{n}$ come with:

- specifically high binding energies
- large energy gaps to first excitation

EXPERIMENTAL EVIDENCE FOR MAGIC NUMBERS

"Magic numbers" point to closed shells of nucleons!
(analogously to atomic shells)

The Woods-Saxon potential

$$
V(r)=-\frac{V_{0}}{1+e^{\frac{r-R}{a}}}
$$

Solution of stationary Schrödinger equation

for spherically symmetric potential:

$$
E \psi=H \psi
$$

Factorization in radial and angular part

$$
R_{n l}(r) \quad Y_{l}^{m}(\theta, \phi)
$$

Spin-orbit coupling and nucleon energy levels

8

2
\qquad
Lower single nucleon energy states (p^{+}and n differ slightly at higher energies)

I-s coupling

possible values of quantum numbers:

$$
\begin{aligned}
& n=1 \ldots \infty \\
& l=0 \ldots \infty
\end{aligned} \quad s=\frac{1}{2} \quad j=l \pm \frac{1}{2}
$$

Fine structure turns out to be much stronger than in atoms!

Remarks on parity:

- Each nucleon state brings in $(-1)^{l}$ to the total parity.
- Full shells have $J=0$, parity +1 and $\mu=0$.
- Unpaired nucleon states define J and parity of whole nucleus

More energy levels...

Examples:

- Ground state of ${ }_{8}^{17} \mathrm{O}_{9}$ (8 protons, 9 neutrons) is defined by single neutron in $1 \mathrm{~d}^{5 / 2}: J^{P}=5 / 2^{+}$
- Ground state of ${ }_{2}^{3} \mathrm{He}_{1}$ (2 protons, 1 neutron) is defined by missing neutron in $1 \mathrm{~s}^{1 / 2}: J^{P}=1 / 2^{+}$

$1 s{ }_{\text {Neutrons }} 1 / 2$

Group activity

Please answer the following questions together in groups. Be ready to discuss your results in the plenary later-on.

Question 1

What is the maximal number of neutrons that can be in the 1 d energy levels of a nucleus?

Question 1

What is the maximal number of neutrons that can be in the 1d energy levels of a nucleus?

The number if neutrons per j state is $2 \mathrm{j}+1$.

Therefore, $6+4=10$ neutrons can be in the two 1d levels.

$1 s \underset{\text { Protonen }}{1 / 2} 1 s \frac{\text { Neutronen }}{1 / 2}$

Question 2

Give the spin, parity and magnetic moment of the ${ }_{8}^{16} \mathrm{O}_{8}$ nucleus (Notation ${ }_{Z}^{A} \mathrm{O}_{\mathrm{N}}$).

$1 s \underset{\text { Protonen }}{1 / 2} 1 s \frac{\text { Neutronen }}{1 / 2}$

Question 2

Give the spin, parity and magnetic moment of the ${ }_{8}^{16} \mathrm{O}_{8}$ nucleus (Notation ${ }_{Z}^{A} \mathrm{O}_{\mathrm{N}}$).

Closed shell!

Parity can also be calculated level-wise via

$$
P|n, j, l\rangle=(-1)^{l}|n, j, l\rangle
$$

$$
\text { 1s } \underset{\text { Protonen }}{1 / 2}
$$

$$
1 s \varlimsup_{\text {Neutronen }} 1 / 2
$$

Question 3

Give the spin, parity and magnetic moment of the ${ }_{8}^{17} \mathrm{O}_{9}$ nucleus.

$1 s \underset{\text { Protonen }}{1 / 2} 1 s \frac{\text { Neutronen }}{1 / 2}$

Question 3

Give the spin, parity and magnetic moment of the ${ }_{8}^{17} \mathrm{O}_{9}$ nucleus.

One neutron in $1 d^{5 / 2}$ remains on top of closed shells.

$$
J^{P}=\frac{5^{+}}{2} \quad l=2
$$

 magnetic moment is given by its own magnetic moment (no contribution to μ from orbital momentum)

$$
\mu=\mu_{\text {Neutron }}=-1.91 \mu_{N} \quad \mu_{N}=\frac{e \hbar}{2 m_{p}}
$$

1s $\underset{\text { Protonen }}{1 / 2}$
$15{\underset{\text { Neutronen }}{ }}^{1 / 2}$

Question 4

Give the spin and parity of the first excited state of the ${ }_{8}^{17} \mathrm{O}_{9}$ nucleus.

Question 4

Give the spin and parity of the first excited state of the ${ }_{8}^{17} \mathrm{O}_{9}$ nucleus.
$l=0 \quad j=1 / 2 \quad \rightarrow \quad \mathrm{~J}^{\mathrm{P}}=1 / 2^{+}$

The first excitation is given by the neutron going from $1 d^{5 / 2}$ to $2 s^{1 / 2}$

Question 5

Give the spin and parity of the ${ }_{7}^{15} \mathrm{~N}_{8}$ nucleus.

Question 5

Give the spin and parity of the ${ }_{7}^{15} \mathrm{~N}_{8}$ nucleus.

One neutron in $1 p^{1 / 2}$ remains un-paired!

$l=1 \quad j=1 / 2 \quad \rightarrow \quad \mathrm{~J}^{\mathrm{P}}=1 / 2^{-}$

$1 s \underset{\text { Protonen }}{1 / 2} 1 s \frac{\text { Neutronen }}{1 / 2}$

Question 6

Give the spin and parity of the first excited state of the ${ }_{7}^{15} \mathrm{~N}_{8}$ nucleus.

Question 6

Give the spin and parity of the first excited state of the ${ }_{7}^{15} \mathrm{~N}_{8}$ nucleus.

First excitation should be $1 p^{3 / 2} \rightarrow 1 p^{1 / 2}$

Then: un-paired neutron in $1 p^{3 / 2}$.

$$
l=1 \quad j=3 / 2 \quad \rightarrow \quad \mathrm{~J}^{\mathrm{P}}=3 / 2^{-}
$$

But: Measurement gives first three excitations as

$$
\mathrm{J}^{\mathrm{P}}=5 / 2^{+}, 1 / 2^{+}, 3 / 2^{-}
$$

Question 7

Why is the binding energy of ${ }_{8}^{14} \mathrm{O}_{6}$ smaller than that of ${ }_{7}^{14} \mathrm{~N}_{7}$?

$1 s \frac{1 s}{\text { Protonen }^{1 / 2}} 1 / 2$

Question 7

Why is the binding energy of ${ }_{8}^{14} \mathrm{O}_{6}$ smaller than that of ${ }_{7}^{14} \mathrm{~N}_{7}$?

Coulomb repulsion of more protons leads to lower binding energies.

$1 s \underset{\text { Protonen }}{1 / 2} 1 s \frac{\text { Neutronen }}{1 / 2}$

Warm-up question 1

Knowing that the nuclear magic numbers are 8, 20, 28, 50 and 82, judge the following statements:
A) The spin-parity of the ${ }_{8}^{16} O$ nucleus is $J^{P}=0^{+}$.
B) The parity of the ${ }_{7}^{15} \mathrm{Ni}$ nucleus is even (+1).
C) The neutron absorption cross section of ${ }_{36}^{86} \mathrm{Kr}$ is higher than the one of ${ }_{36}^{85} \mathrm{Kr}$.
D) The proton separation energy of ${ }_{50}^{120} \mathrm{SN}$ is higher than the one of ${ }_{51}^{120} \mathrm{SN}$.
E) The proton separation energy of ${ }_{50}^{120} \mathrm{SN}$ is higher than the one of ${ }_{50}^{122} \mathrm{SN}$.

Warm-up question 1

Knowing that the nuclear magic numbers are 8, 20, 28, 50 and 82, judge the following statements:
() The spin-parity of the ${ }_{8}^{16} O$ nucleus is $J^{P}=0^{+}$.
B) The parity of the ${ }_{7}^{15} \mathrm{Ni}$ nucleus is even (+1).

$$
\text { is odd (unpaired proton in } 1 \mathrm{p}^{1 / 2} \text { orbital) }
$$

C) The neutron absorption cross section of ${ }_{36}^{86} \mathrm{Kr}$ is higher than the one of ${ }_{36}^{85} \mathrm{Kr}$.

```
Is lower! (nucleus is happy with }50\mathrm{ neutrons)
```

The proton separation energy of ${ }_{50}^{120} S N$ is higher than the one of ${ }_{51}^{120} S N$.
E) The proton separation energy of ${ }_{50}^{120} \mathrm{SN}$ is higher than the one of ${ }_{50}^{122} \mathrm{SN}$.

Is lower! (more neutrons -> more glue)

