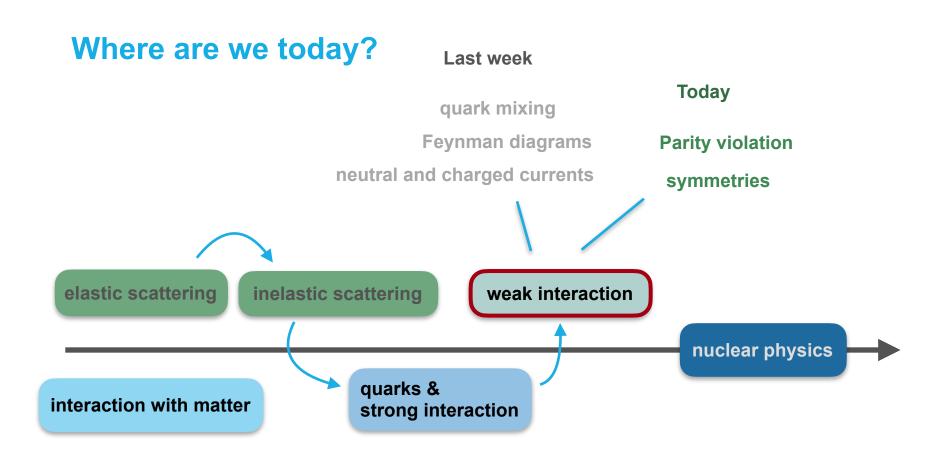

Introduction to Nuclear and Particle Physics

Lesson 10

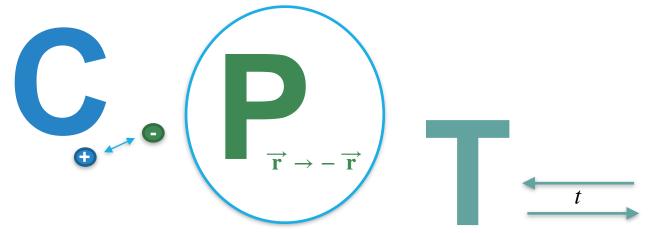
parity violation symmetries

The pion can decay in two ways into leptons. Which statements are correct?

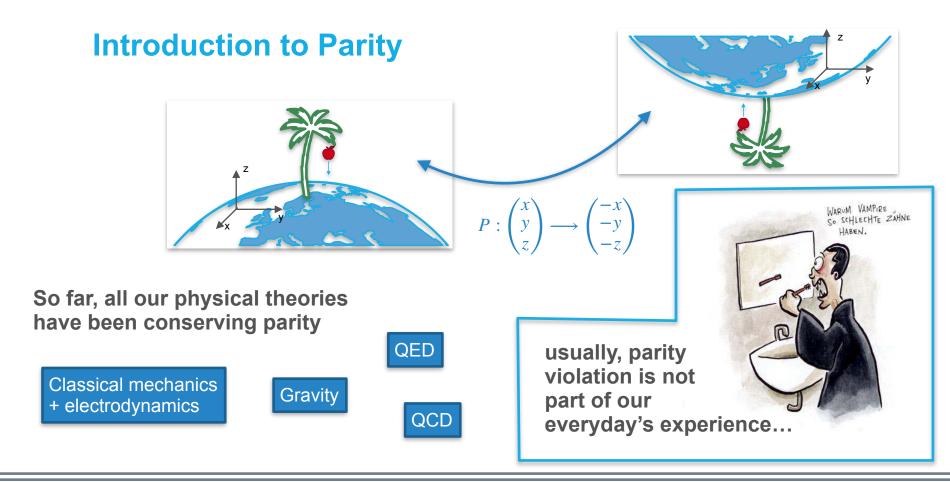

- A) The positron channel is much more likely because of helicity suppression.
- B) The massive anti-lepton (e^+/μ^+) that is produced must be right-chiral.
- C) The neutrinos in the final state will for sure be left-chiral.
- D) The helicity of the produced e^+/μ^+ must be h=+1.
- E) The weak W bosons couple only to particles with helicity h=-1.

Which statement about symmetries is correct?

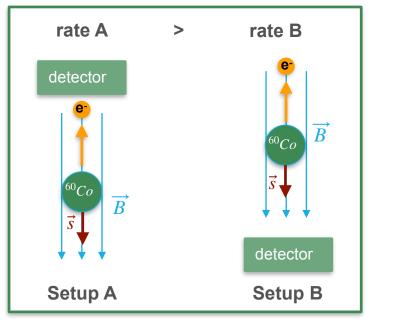
- A) The spin changes its direction under the parity transformation.
- B) The CP symmetry is maximally violated in the weak interaction.
- C) Parity violation can be observed, but is not part of the Standard Model.
- D) So far there is no experimental indication at all for a violation of the CPT symmetry.



... but CPT still holds! - violations in the weak sector



... but CPT still holds! - violations in the weak sector



Chien-Shiung Wu

The Wu experiment

Idea: Do a parity transformation with the experimental setup to test whether parity is conserved in weak decays.

in reality: simply change polarization of B-field

Note:

As axial vectors, spin and angular momentum do not change under parity! $P(\vec{S}) = \vec{S}$ $P(\vec{L}) = P(\vec{r} \times \vec{p}) = -(\vec{r}) \times (-\vec{p}) = \vec{L}$

Observation:

 β^- decay strongly favours emission of e-anti-parallel to spin direction of nucleus.

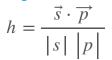
Question about parity

Which statements are correct about the parity transformation?

- The momentum \$\vec{p}\$ changes sign under parity transformation.
 The velocity \$\vec{v}\$ changes sign under parity transformation.
 The angular momentum \$\vec{L}\$ changes sign under parity transformation.
 The spin \$\vec{S}\$ changes sign under parity transformation.
 The kinetic energy changes sign under parity transformation.
 - The helicity of a particle changes sign under parity transformation.

Question about parity

Which statements are correct about the parity transformation?


The momentum p changes sign under parity transformation.
 The velocity v changes sign under parity transformation.
 The angular momentum L changes sign under parity transformation.
 The spin S changes sign under parity transformation.
 The kinetic energy changes sign under parity transformation.
 The helicity of a particle changes sign under parity transformation.

Helicity vs Chirality

Helicity

 \overrightarrow{p}

- describes state of spin relative to momentum
- for fermions: $h = \pm 1$
- depends on reference frame!

h = 1

h = -1

The Connection

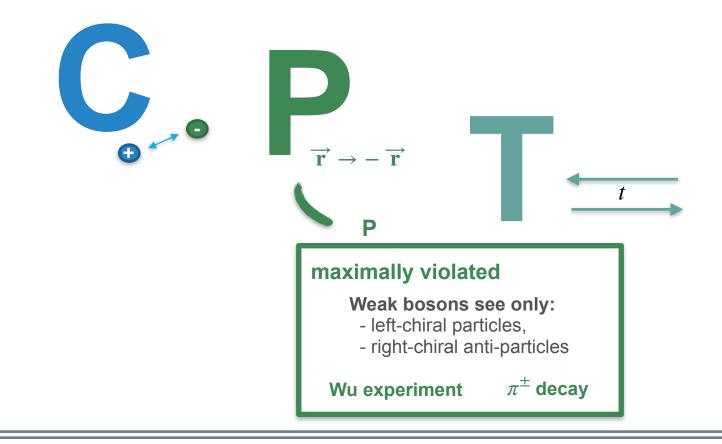
Mass-less particle: $\beta = 1$ Helicity corresponds to Chirality

Massive particle: $\beta < 1$

- Chiral particle is in superposition of $h = \pm 1$ states.
- Probability for left-chiral e⁻ to be in h = 1 state:

$$W(h=1) = \frac{1}{2}(1-\beta)$$

Chirality


left-chiral / right-chiral

- Fundamental property of particle
- determines interaction of particle with parity-violating interactions

Lorentz-invariant quantity

... but CPT still holds! - violations in the weak sector

Question 19 (2 Points) A particle is moving along the +x-axis of a reference system K with helicity H = +1 and energy E. Its velocity is thus $\vec{v} = +|v|\vec{e}_x$. A second reference system K' moves along the +x-axis of the reference system K. The velocity of the reference system K' in K is $+|v_{RF}|\vec{e}_x$. The axes of the two reference systems point in the same directions, i.e., $\vec{e}_x = \vec{e}_{x'}$ etc.

Which statements are correct?

- **A.** The energy E of the particle is an invariant, i.e., independent of the reference system.
- **B.** The mass of the particle is an invariant.
- **C.** The spin in K points in $+\vec{e_x}$ -direction, i.e., $\vec{S} = +|S|\vec{e_x}$.
- **D.** The spin in K' can point in $-\vec{e}_{x'}$ -direction, i.e., $\vec{S'} = -|S'|\vec{e}_{x'}$.
- **E.** The helicity in K' can be negative.

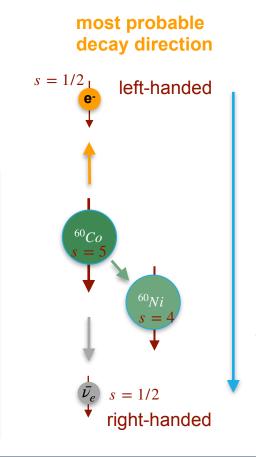
Question 19 (2 Points) A particle is moving along the +x-axis of a reference system K with helicity H = +1 and energy E. Its velocity is thus $\vec{v} = +|v|\vec{e_x}$. A second reference system K' moves along the +x-axis of the reference system K. The velocity of the reference system K' in K is $+|v_{RF}|\vec{e_x}$. The axes of the two reference systems point in the same directions, i.e., $\vec{e_x} = \vec{e_{x'}}$ etc.

Which statements are correct?

A. The energy E of the particle is an invariant, i.e., independent of the reference system.
B. The mass of the particle is an invariant.

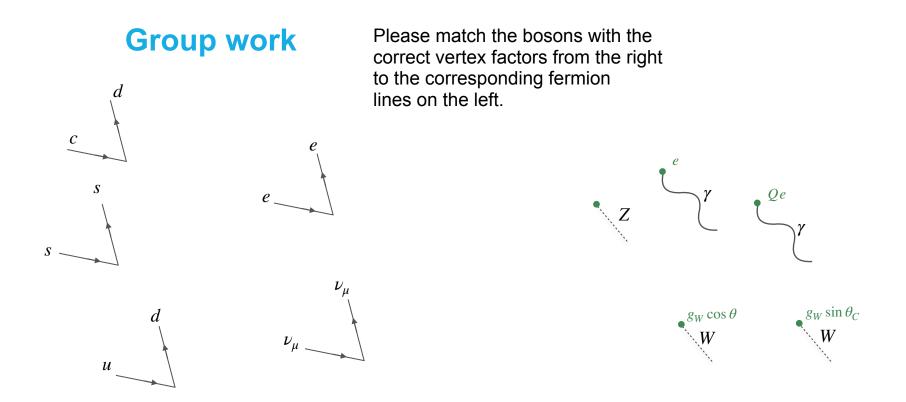
The spin in K points in $+\vec{e}_x$ -direction, i.e., $\vec{S} = +|S|\vec{e}_x$.

D. The spin in
$$K'$$
 can point in $-\vec{e}_{x'}$ -direction, i.e., $\vec{S'} = -|S'|\vec{e}_{x'}$.
E. The helicity in K' can be negative.

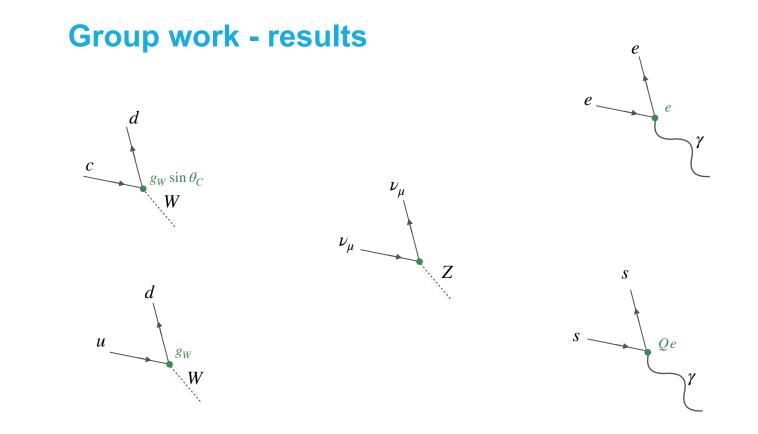

Maximal Parity Violation and Wu's experiment

W bosons only couple to left-chiral particles and right-chiral anti-particles.

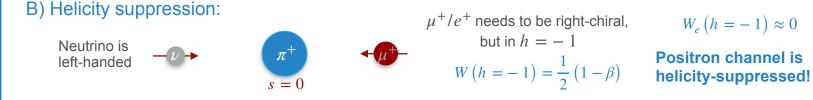
 \Rightarrow anti-neutrino from decay must be right-handed!


Link to Wu's observation:

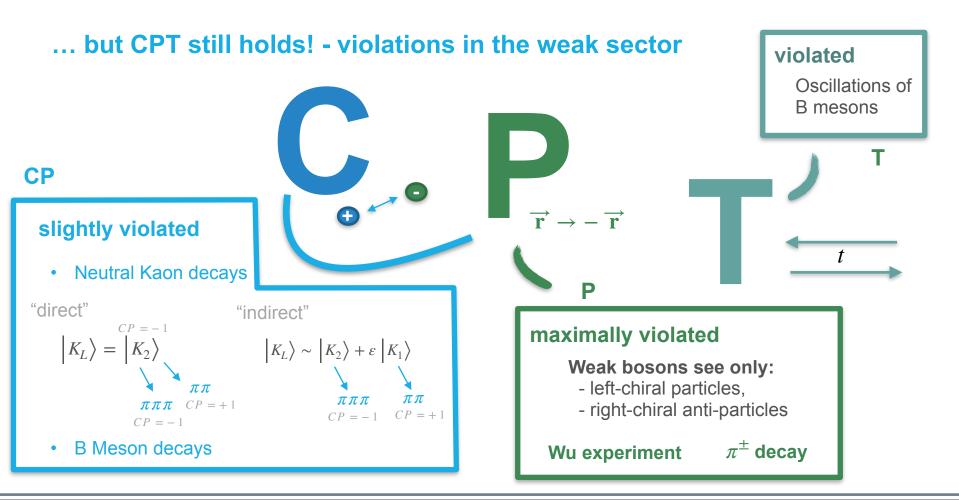
- ⁶⁰Co are spin-polarized by external B field.
- Parity Violation: decay produces left-chiral electron and right-chiral anti-neutrino
- Due to angular momentum conservation: electrons ejected anti-parallel to spin!



Ŕ

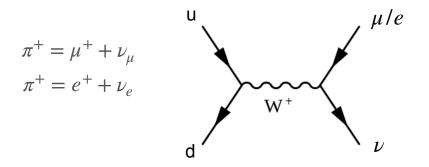

The decay of the charged pion

Which of the following decay channels is dominant?


$$\pi^{+} = \mu^{+} + \nu_{\mu}$$

$$\pi^{+} = e^{+} + \nu_{e}$$
d
$$\mu/e$$

$$\psi'$$



Nice video

https://www.youtube.com/watch?v=Elt0Gt9Cb6Q

The pion can decay in two ways into leptons. Which statements are correct?

- A) The positron channel is much more likely because of helicity suppression.
- B) The massive anti-lepton (e^+/μ^+) that is produced must be right-chiral.
- C) The neutrinos in the final state will for sure be left-chiral.
- D) The helicity of the produced e^+/μ^+ must be h=+1.
- E) The weak W bosons couple only to particles with helicity h=-1.

The pion can decay in two ways into leptons. Which statements are correct?

- $\pi^{+} = \mu^{+} + \nu_{\mu}$ $\pi^{+} = e^{+} + \nu_{e}$ d W^{+} ν Muon channel is more likely because of that
- A) The positron channel is much more likely because of helicity suppression.

The massive anti-lepton (e^+/μ^+) that is produced must be right-chiral.

The neutrinos in the final state will for sure be left-chiral.

- D) The helicity of the produced e^+/μ^+ must be h=+1.
- E) The weak W bosons couple only to particles with helicity h=-1.

The helicity can also be h=-1 since the e/μ both have mass.

W distinguishes for chirality, not helicity.

Which statement about symmetries is correct?

- A) The spin changes its direction under the parity transformation.
- B) The CP symmetry is maximally violated in the weak interaction.
- C) Parity violation can be observed, but is not part of the Standard Model.
- D) So far there is no experimental indication at all for a violation of the CPT symmetry.

Which statement about symmetries is correct?

- A) The spin changes its direction under the parity transformation.
- B) The CP symmetry is maximally violated in the weak interaction.
- C) Parity violation can be observed, but is not part of the Standard Model. Is

So far there is no experimental indication at all for a violation of the CPT symmetry.

Introduction to particle and nuclear physics

Does not change

Only slightly violated

Is part of the SM!