Introduction to Nuclear and Particle Physics

Lesson 1

special relativity

Elemente der Übungsstunde

Aufgaben durchrechnen

aus Hausaufgaben, Klausuren, Internet

vor allem ihr selbst

Begeisterung + Spass

Videos, fun facts, eure Ideen

Rechentricks + Rezepte

Rechenschritte, Mini-Rechnungen, Probleme

Theorie, Konzepte

Zusammenfassungen, Diskussionen, usw.

Elemente der Übungsstunde

Rolle der Übungsgruppe

Die Aufgaben kenne ich auswendig

Was kaufe ich nachher ein?

Introduction to particle and nuclear physics

Rolle der Übungsgruppe

Die Aufgaben kenne ich auswendig

Was kaufe ich nachher ein?

Die Übungsgruppe ist der Ort, an dem ihr nachfragen / euch einbringen / mitgestalten könnt.

Fehler / Unsicherheiten gehören zu jedem Lernprozess und sind nicht peinlich.

Wichtiger Bestandteil: sozialer Austausch + Interaktion

Overview of the plan for today

Introduction to particle and nuclear physics

Which formulas are valid to calculate the kinetic energy of an electron traveling with momentum p = 1 GeV? (more than 1 possible)

A)
$$E_{kin} = p$$

$$\mathsf{B}) \quad E_{kin} = \frac{p^2}{2m}$$

C)
$$E_{kin} = \sqrt{m^2 + p^2} - m^2$$

D) None of them

Charged particles are moving in a magnetic field. Which statement is correct?

- A) Particles with different mass have the same bending radius as long as their charge and momentum are the same.
- B) All particles with the same velocity and charge have the same bending radius.
- C) Particles with the same momentum but different mass reach the end at different times.

Remark on exercises with natural units

$$c = 2.998 \cdot 10^8 \text{ m/s}$$
 $e = 1.602 \cdot 10^{-19} \text{C}$

Example:

 $eV = 1.602 \cdot 10^{-19} J$ $\hbar = 1.055 \cdot 10^{-34} Js$

 $1 \text{ kg} = 1 \text{ N} \cdot \text{s} \cdot \text{s/m}$

$$1 \text{ kg} = 1 \text{ J/m} \cdot \text{s} \cdot \text{s/m}$$

 $1 \text{ kg} \cdot \text{c}^2 = 1 \text{ J} \cdot (3 \cdot 10^8)^2$

Strategy:

- unit to be expressed should be on the left
- try to "produce" Joule on the right, then use

$$eV = 1.602 \cdot 10^{-19} J$$

- set c and h to 1 only in the very end!

Mass, energy and momentum in special relativity

Mass, energy and momentum in special relativity

Mass, energy and momentum in special relativity

natural units

Approximations for extreme cases

$$E = \sqrt{m^2 + p^2}$$

Non-relativistic limit:

 $E_{kin} \ll m$

$$E_{kin} = \frac{p^2}{2m} \qquad E_0 = m$$

$$m_{\mu} = 105.7 \text{ MeV}$$

 $E_{kin} \approx 40 \text{ meV}$

Ultra-relativistic limit: $E_{kin} \gg m$

 $E = m \cdot \sqrt{1 + \frac{p^2}{m^2}} \approx m + \frac{p^2}{2m} + \dots$

$$E = p \cdot \sqrt{1 + \frac{m^2}{p^2}} \approx p + \frac{m^2}{2p} + \dots \qquad \qquad p = E = E_{kin}$$

Electrons from μ decay: $m_e = 0.511 \text{ MeV}$

 $E_{kin} \approx 50 \text{ MeV}$

Some mass scales to know

Introduction to particle and nuclear physics

Some mass scales to know

Introduction to particle and nuclear physics

natural units

Energy of a cosmic muon

A cosmic muon is approaching the surface of the earth with a momentum of $\left| \overrightarrow{p} \right| = 1 \text{ GeV/c.}$

What is the energy of the muon in the system of the earth (LAB)?

E = ??

What is the energy of the muon in the muon system?

$$E' = ??$$

natural units

Energy of a cosmic muon

A cosmic muon is approaching the surface of the earth with a momentum of $\left| \overrightarrow{p} \right| = 1 \text{ GeV/c.}$

What is the energy of the muon in the system of the earth (LAB)?

$$E = \sqrt{m^2 + p^2} = 1.006 \text{ GeV}$$

What is the energy of the muon in the muon system?

$$E' = \sqrt{m^2 + p'^2} = m = 105.6 \text{ MeV}$$

The total energy changes under Lorentz transformation. It is **not Lorentz-invariant**.

Recap: Lorentz transformation and four-vectors

In special relativity, Lorentz transformation is needed to change between inertial systems.

How this transformation looks like depends on the transformed object! Two examples:

SI units

Recap: Lorentz transformation and four-vectors

In special relativity, Lorentz transformation is needed to change between inertial systems.

How this transformation looks like depends on the transformed object! Two examples:

Introduction to particle and nuclear physics

natural units

- Energy which is available in the center of mass
- Determines total energy of decay or collision products

Question about the invariant mass

Positive pions ($m_{\pi} = 140 \text{ MeV/c}$) decay in most of the cases into a positive muon ($m_{\mu} = 106 \text{ MeV/c}$) and a neutrino ($m_{\nu} \approx 0$).

What are the momenta of both muon and neutrino after the decay when a pion decays at rest?

Use 4-momentum conservation: $P_{\pi} = P_{\mu} + P_{\nu}$

Question about the invariant mass

Positive pions ($m_{\pi} = 140 \text{ MeV/c}$) decay in most of the cases into a positive muon ($m_{\mu} = 106 \text{ MeV/c}$) and a neutrino ($m_{\nu} \approx 0$).

What are the momenta of both muon and neutrino after the decay when a pion decays at rest?

Time dilation

The lifetime of a muon is $\tau = 2.2 \ \mu s$. Which lifetime τ' would we measure for a muon cycling in a storage ring at $p = 1 \ \text{GeV/c}$?

A) $\tau' < \tau$

B)
$$au' \approx au$$

C) $\tau' > \tau$

Time dilation

The lifetime of a muon is $\tau = 2.2 \ \mu s$. Which lifetime τ' would we measure for a muon cycling in a storage ring at $p = 1 \ \text{GeV/c}$?

A)
$$\tau' < \tau$$

B) $\tau' \approx \tau$
C) $\tau' > \tau$

Time dilation! $\tau' = \gamma \tau$ "Time measured in one's rest frame is always shortest."

How do we actually bend particle trajectories?

Picture of the world's most famous accelerator.

(not muons here, but mainly protons)

Introduction to particle and nuclear physics

Hints for calculation of the bending radius

Bending radius of particles moving perpendicular to B field:

$$R = \frac{p_{\perp}}{qB} = \frac{\gamma \ mv_{\perp}}{qB}$$

Attention: For relativistic particles, Newton II does not hold in the form $F = m \cdot a$ but only in the more general form $F = \frac{dp}{dt}$.

Application: magnets in the PSI beamlines

Application: magnets in the PSI beamlines

Which formulas are valid to calculate the kinetic energy of an electron traveling with momentum p = 1 GeV? (more than 1 possible)

A)
$$E_{kin} = p$$

$$\mathsf{B}) \quad E_{kin} = \frac{p^2}{2m}$$

C)
$$E_{kin} = \sqrt{m^2 + p^2} - m^2$$

D) None of them

Which formulas are valid to calculate the kinetic energy of an electron traveling with momentum p = 1 GeV? (more than 1 possible)

A) $E_{kin} = p$ Ultra-i

$$\mathsf{B}) \quad E_{kin} = \frac{p^2}{2m}$$

These electrons are ultra-relativistic!

C)
$$E_{kin} = \sqrt{m^2 + p^2} - m^2$$
 Precise calculation

D) None of them

Charged particles are moving in a magnetic field. Which statement is correct?

- A) Particles with different mass have the same bending radius as long as their charge and momentum are the same.
- B) All particles with the same velocity and charge have the same bending radius.
- C) Particles with the same momentum but different mass reach the end at different times.

Charged particles are moving in a magnetic field. Which statement is correct?

$$R = \frac{p_{\perp}}{qB} = \frac{\gamma \ mv_{\perp}}{qB}$$

- A) Particles with different mass have the same bending radius as long as their charge and momentum are the same.
- B) All particles with the same velocity and charge have the same bending radius.
- C) Particles with the same momentum but different mass reach the end at different times.

$$\gamma = \frac{p}{\gamma \cdot m}$$

۱

