Introduction to Nuclear and Particle Physics

Lesson 1

special relativity
0

Elemente der Übungsstunde

vor allem ihr selbst

Rechentricks + Rezepte

Rechenschritte, Mini-Rechnungen, Probleme

Begeisterung + Spass

Videos, fun facts, eure Ideen

Elemente der Übungsstunde

Rolle der Übungsgruppe

Die Aufgaben kenne ich auswendig

Was kaufe ich nachher ein?

Rolle der Übungsgruppe

[^0]Die Übungsgruppe ist der Ort, an dem ihr nachfragen / euch einbringen / mitgestalten könnt.

Fehler / Unsicherheiten gehören zu jedem Lernprozess und sind nicht peinlich.

Wichtiger Bestandteil:
sozialer Austausch + Interaktion

[^1]
Overview of the plan for today

mass, energy, momentum

Special Relativity

invariant mass / center-of-mass energy

Lorentz transformation, 4-vectors

Time dilation

Warm-up question 1

Which formulas are valid to calculate the kinetic energy of an electron traveling with momentum $p=1 \mathrm{GeV}$? (more than 1 possible)
A) $\quad E_{k i n}=p$
B) $E_{k i n}=\frac{p^{2}}{2 m}$
C) $E_{k i n}=\sqrt{m^{2}+p^{2}}-m^{2}$
D) None of them

Warm-up question 2

Charged particles are moving in a magnetic field.
Which statement is correct?

A) Particles with different mass have the same bending radius as long as their charge and momentum are the same.
B) All particles with the same velocity and charge have the same bending radius.
C) Particles with the same momentum but different mass reach the end at different times.

Remark on exercises with natural units

Example:

$$
\begin{array}{ll}
\mathrm{c}=2.998 \cdot 10^{8} \mathrm{~m} / \mathrm{s} & \mathrm{e}=1.602 \cdot 10^{-19} \mathrm{C} \\
\mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J} & \hbar=1.055 \cdot 10^{-34} \mathrm{Js}
\end{array}
$$

$$
1 \mathrm{~kg}=1 \mathrm{~N} \cdot \mathrm{~s} \cdot \mathrm{~s} / \mathrm{m}
$$

$1 \mathrm{~kg}=1 \mathrm{~J} / \mathrm{m} \cdot \mathrm{s} \cdot \mathrm{s} / \mathrm{m}$
$1 \mathrm{~kg} \cdot \mathrm{c}^{2}=1 \mathrm{~J} \cdot\left(3 \cdot 10^{8}\right)^{2}$

Strategy:

- unit to be expressed should be on the left - try to "produce" Joule on the right, then use

$$
\mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J}
$$

- set c and h to 1 only in the very end!

Mass, energy and momentum in special relativity

Relativistic particle Total energy $\begin{aligned} & E=\sqrt{? ?+? ?} \\ & E=? ? \end{aligned}$ Momentum $p=? ?$	rest energy $E_{0}=m c^{2}$ "Equivalence of mass and energ kinetic energy $E_{k i n}=E-? ?$
$\begin{aligned} & \beta=\frac{v}{c} \\ & \beta=\frac{p c}{E} \end{aligned}$	ativistic factors $\ldots 1 \quad \gamma=1 \ldots \infty$ $\begin{aligned} \gamma & =\frac{1}{\sqrt{1-\beta^{2}}} \\ \gamma & =\frac{E}{m c^{2}} \end{aligned}$

Non-relativistic particle

$$
E_{k i n} \ll m c^{2}
$$

Total energy

$$
E=m c^{2}+\frac{p^{2}}{2 m}
$$

Momentum

$$
p=m v
$$

Mass, energy and momentum in special relativity

Relativistic particle

Total energy

$$
\begin{aligned}
& E=\sqrt{m^{2} c^{4}+p^{2} c^{2}} \\
& E=\gamma \cdot m c^{2}
\end{aligned}
$$

Momentum

$$
p=\gamma \cdot m v
$$

$$
\begin{aligned}
& \text { rest energy } \\
& \qquad E_{0}=m c^{2}
\end{aligned}
$$

"Equivalence of mass and energy"

$$
\begin{gathered}
\text { kinetic energy } \\
E_{k i n}=E-E_{0}
\end{gathered}
$$

Non-relativistic particle

$$
E_{k i n} \ll m c^{2}
$$

Total energy

$$
E=m c^{2}+\frac{p^{2}}{2 m}
$$

Momentum

$$
p=m v
$$

$$
\begin{array}{lll}
\beta=\frac{v}{c} & \text { Relativistic factors } & \gamma=\frac{1}{\sqrt{1-\beta^{2}}} \\
\beta=\frac{p c}{E} & \beta=0 \ldots 1 \quad \gamma=1 \ldots \infty & \gamma=\frac{E}{m c^{2}}
\end{array}
$$

Mass, energy and momentum in special relativity

Relativistic particle

Total energy

$$
\begin{aligned}
& E=\sqrt{m^{2}+p^{2}} \\
& E=\gamma \cdot m
\end{aligned}
$$

Momentum

$$
p=\gamma \cdot m v
$$

"Equivalence of mass and energy"

$$
\begin{gathered}
\text { kinetic energy } \\
E_{k i n}=E-E_{0}
\end{gathered}
$$

Non-relativistic particle

$$
E_{k i n} \ll m
$$

Total energy

$$
E=m+\frac{p^{2}}{2 m}
$$

Momentum

$$
p=m v
$$

$$
\begin{array}{lll}
\beta=v & \text { Relativistic factors } & \\
\beta=\frac{p}{E} & \beta=0 \ldots 1 \quad \gamma=1 \ldots \infty & \frac{1}{\sqrt{1-\beta^{2}}} \\
\hline & & \gamma=\frac{E}{m}
\end{array}
$$

Approximations for extreme cases

$$
E=\sqrt{m^{2}+p^{2}}
$$

Non-relativistic limit: $\quad E_{k i n} \ll m$

$$
E=m \cdot \sqrt{1+\frac{p^{2}}{m^{2}}} \approx m+\frac{p^{2}}{2 m}+\ldots \quad E_{\text {kin }}=\frac{p^{2}}{2 m} \quad E_{0}=m
$$

thermal muons:

$$
\begin{aligned}
m_{\mu} & =105.7 \mathrm{MeV} \\
E_{k i n} & \approx 40 \mathrm{meV}
\end{aligned}
$$

Ultra-relativistic limit: $\quad E_{k i n} \gg m$

$$
E=p \cdot \sqrt{1+\frac{m^{2}}{p^{2}}} \approx p+\frac{m^{2}}{2 p}+\ldots \quad \quad \quad \quad=E=E_{k i n}
$$

Electrons from μ decay:

$$
\begin{aligned}
& m_{e}=0.511 \mathrm{MeV} \\
& E_{k i n} \approx 50 \mathrm{MeV}
\end{aligned}
$$

Some mass scales to know

neutrino	electron				
	Nucleon				
	alpha				Higgs
pion	Kaon				

Some mass scales to know

Energy of a cosmic muon

A cosmic muon is approaching the surface of the earth with a momentum of $|\vec{p}|=1 \mathrm{GeV} / \mathrm{c}$.

What is the energy of the muon in the system of the earth (LAB)?

$$
E=? ?
$$

What is the energy of the muon in the muon system?

$$
E^{\prime}=? ?
$$

Energy of a cosmic muon

A cosmic muon is approaching the surface of the earth with a momentum of $|\vec{p}|=1 \mathrm{GeV} / \mathrm{c}$.

What is the energy of the muon in the system of the earth (LAB)?

$$
E=\sqrt{m^{2}+p^{2}}=1.006 \mathrm{GeV}
$$

What is the energy of the muon in the muon system?
$E^{\prime}=\sqrt{m^{2}+p^{\prime 2}}=m=105.6 \mathrm{MeV}$

The total energy changes under Lorentz transformation. It is not Lorentz-invariant.

Recap: Lorentz transformation and four-vectors

In special relativity, Lorentz transformation is needed to change between inertial systems.
How this transformation looks like depends on the transformed object! Two examples:
4-vectors Examples: position vector

$$
\mathbf{x}=\binom{c t}{\vec{x}}
$$

Physics II

Lorentz scalars Examples:

> Space time interval

$$
\mathbf{d}=\sqrt{\mathbf{x}_{\mu} \cdot \mathbf{x}^{\mu}}=\sqrt{\mathbf{c}^{2} \mathbf{t}^{2}-|\overrightarrow{\mathbf{x}}|^{2}}
$$

Recap: Lorentz transformation and four-vectors

In special relativity, Lorentz transformation is needed to change between inertial systems.
How this transformation looks like depends on the transformed object! Two examples:

4 - vectors	Examples:	"boost" in x						position vector	4-momentum
transform with $\quad x^{\prime}=\Lambda_{L} x$ transformation matrix		$\Lambda_{\mathrm{x}}=$	$\left(\begin{array}{c} \gamma \\ -\gamma \\ 0 \\ 0 \end{array}\right.$	β	$\begin{gathered} -\beta \gamma \\ \gamma \\ 0 \\ 0 \end{gathered}$			$\mathbf{x}=\binom{c t}{\vec{x}}$ Physics II	$\mathbf{p}=\binom{E / c}{\vec{p}}$ new

Lorentz scalars

stay unchanged under
Lorentz transformation
"lorentz-invariant"
"orentz-invariant"

Examples:
Space time interval

$$
\mathbf{d}=\sqrt{\mathbf{x}_{\mu} \cdot \mathbf{x}^{\mu}}=\sqrt{\mathbf{c}^{2} \mathbf{t}^{2}-|\overrightarrow{\mathbf{x}}|^{2}}
$$

invariant mass

$$
\mathbf{m c}=\sqrt{\mathbf{E}^{2} / \mathbf{c}^{2}-|\overrightarrow{\mathbf{p}}|^{2}}=\sqrt{\mathbf{p}_{\mu} \cdot \mathbf{p}^{\mu}}
$$

The invariant mass

Definition:

$$
\sqrt{\mathbf{s}}=\sqrt{\mathbf{p}_{\mu} \cdot \mathbf{p}^{\mu}}=\sqrt{\mathbf{E}^{2}-\mathbf{p}^{2}}
$$

\Rightarrow Lorentz-invariant quantity!

Note:

- Sum convention: $p_{\mu} p^{\mu}=\sum_{\mu=0}^{3} p_{\mu} p^{\mu}$
- 4-product introduces minus sign

Meaning:

```
several particles:
equal to center-of-mass energy
    because \sqrt{}{s}=E for }|\vec{p}|=
```

- Energy which is available in the center of mass
- Determines total energy of decay or collision products

Question about the invariant mass

Positive pions ($m_{\pi}=140 \mathrm{MeV} / \mathrm{c}$) decay in most of the cases into a positive muon ($m_{\mu}=106 \mathrm{MeV} / \mathrm{c}$) and a neutrino ($m_{\nu} \approx 0$).

What are the momenta of both muon and neutrino after the decay when a pion decays at rest?

Use 4-momentum conservation: $\quad P_{\pi}=P_{\mu}+P_{\nu}$

$$
\binom{E_{\pi}}{\overrightarrow{0}}=\binom{E_{\mu}+E_{\nu}}{\overrightarrow{p_{\mu}}+\overrightarrow{p_{\nu}}}
$$

Question about the invariant mass

Positive pions ($m_{\pi}=140 \mathrm{MeV} / \mathrm{c}$) decay in most of the cases into a positive muon ($m_{\mu}=106 \mathrm{MeV} / \mathrm{c}$) and a neutrino ($m_{\nu} \approx 0$).

What are the momenta of both muon and neutrino after the decay when a pion decays at rest?

Use 4-momentum conservation: $\quad P_{\pi}=P_{\mu}+P_{\nu}$

$$
\begin{array}{ll}
\binom{E_{\pi}}{\overrightarrow{0}}=\binom{E_{\mu}+E_{\nu}}{\overrightarrow{p_{\mu}}+\overrightarrow{p_{\nu}}} \\
\binom{m_{\pi}}{\overrightarrow{0}}=\binom{\sqrt{m_{\mu}^{2}+\overrightarrow{p_{\mu}}}+\left|\overrightarrow{p_{\nu}}\right|}{\overrightarrow{p_{\mu}}+\overrightarrow{p_{\nu}}} \\
\left|\overrightarrow{p_{\mu}}\right|=\left|\overrightarrow{p_{\nu}}\right|=p
\end{array}
$$

$$
\begin{gathered}
\nu_{\mu} \\
\Rightarrow p=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}=29.9 \mathrm{MeV} / \mathrm{c}
\end{gathered}
$$

Time dilation

The lifetime of a muon is $\tau=2.2 \mu \mathrm{~s}$.
Which lifetime τ^{\prime} would we measure for a muon cycling in a storage ring at $p=1 \mathrm{GeV} / \mathrm{c}$?
A) $\tau^{\prime}<\tau$

B) $\tau^{\prime} \approx \tau$
C) $\tau^{\prime}>\tau$

Time dilation

The lifetime of a muon is $\tau=2.2 \mu \mathrm{~s}$.
Which lifetime τ^{\prime} would we measure for a muon cycling in a storage ring at $p=1 \mathrm{GeV} / \mathrm{c}$?
A) $\tau^{\prime}<\tau$

B) $\tau^{\prime} \approx \tau$
C) $\tau^{\prime}>\tau$

Time dilation! $\tau^{\prime}=\gamma \tau$
"Time measured in one's rest frame is always shortest."

How do we actually bend particle trajectories?

Picture of the world's most famous accelerator.
(not muons here, but mainly protons)

Hints for calculation of the bending radius

Bending radius of particles moving perpendicular to B field:

$$
R=\frac{p_{\perp}}{q B}=\frac{\gamma m v_{\perp}}{q B}
$$

Attention: For relativistic particles, Newton II does not hold in the form $F=m \cdot a$ but only in the more general form $F=\frac{\mathrm{d} p}{\mathrm{~d} t}$.

Lorentz force stays same for relativistic particles

$$
F_{L}=q v_{\perp} B
$$

Basic idea:

(no E field)

Centripetal term changes!

$$
\frac{\mathrm{d} \vec{p}_{\perp}}{\mathrm{d} t}=\frac{\mathrm{d}\left(\gamma \cdot m \vec{v}_{\perp}\right)}{\mathrm{d} t}
$$

What does circular motion with constant speed tell us about $\frac{\mathrm{d} \gamma}{\mathrm{d} t}$?

Derive $\frac{\mathrm{d} \vec{v}_{\perp}}{\mathrm{d} t}$ as for non-relativistic particles.

Application: magnets in the PSI beamlines

What is the direction of the B field lines in the blue dipole magnets?

Application: magnets in the PSI beamlines

What is the direction of the B field lines in the blue dipole magnets?
right-hand rule

Warm-up question 1

Which formulas are valid to calculate the kinetic energy of an electron traveling with momentum $p=1 \mathrm{GeV}$? (more than 1 possible)
A) $\quad E_{k i n}=p$
B) $E_{k i n}=\frac{p^{2}}{2 m}$
C) $E_{k i n}=\sqrt{m^{2}+p^{2}}-m^{2}$
D) None of them

Warm-up question 1

Which formulas are valid to calculate the kinetic energy of an electron traveling with momentum $p=1 \mathrm{GeV}$? (more than 1 possible)
A) $E_{k i n}=p$
B) $E_{k i n}=\frac{p^{2}}{2 m}$
C) $E_{k i n}=\sqrt{m^{2}+p^{2}}-m^{2} \quad$ Precise calculation
D) None of them

Ultra-relativistic limit

These electrons are ultra-relativistic!
(

Warm-up question 2

Charged particles are moving in a magnetic field.
Which statement is correct?

A) Particles with different mass have the same bending radius as long as their charge and momentum are the same.
B) All particles with the same velocity and charge have the same bending radius.
C) Particles with the same momentum but different mass reach the end at different times.

Warm-up question 2

Charged particles are moving in a magnetic field.
Which statement is correct?

$$
R=\frac{p_{\perp}}{q B}=\frac{\gamma m v_{\perp}}{q B}
$$

A) Particles with different mass have the same bending radius as long as their charge and momentum are the same.
B) All particles with the same velocity and charge have the same bending radius.
C) Particles with the same momentum but different mass reach the end at different times.

$$
v=\frac{p}{\gamma \cdot m}
$$

[^0]: Die Aufgaben kenne ich auswendig

[^1]: Was kaufe ich nachher ein?

